Tracking of Resistant Salmonella Species in Poultry Farms: New Method of Control Using Essential Oils Nano-Emulsion Conjugated with Antimicrobial Agents

  • H. S. H. Salam Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Beni-Suef University
  • A. N. Mohammed Department of Hygiene, Zoonoses, and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University
  • A. R. Hosni Directorate of Veterinary Medicine, El-Fayoum, Egypt
  • A. A. E. Shehata Department of Bacteriology, Animal Health Research Institute, El-Fayoum Laboratory, El-Fayoum, Agricultural Research Center, Egypt
Keywords: Salmonella spp., poultry farms, essential oils, multidrug resistance, nano-emulsion

Abstract

This work was designed to monitor and track Salmonella spp. in the different internal organs (heart, liver, spleen, and caecum) of 247 bird species (chickens n=176, chicks n=47, ducks n=15, and ducklings n=9) with variable ages in two governorates; El-Fayoum and Beni-Suef, Egypt. Besides assessing the antimicrobial activity of antibacterial agents, essential oils, oils nano-emulsion, and their interactions with each other against salmonellae isolates for their control at the farm level. All samples were collected aseptically for further microbiological and serological investigations. Moreover, the efficiency of essential oils and oils nano-emulsion (thymol, carvacrol, basil, and cinnamon) against recovered Salmonellae were tested using the agar dilution method. A total of fourteen Salmonella serotypes were detected from different investigated internal organs (heart, liver, and spleen), and the three most predominant serovars were S. virchow (17.14%), S. infantis (11.43%), and S. anatum (11.43%). The resistance profile of Salmonella spp. referred to 47.14%, 40.0%, 31.43%, 25.71%, 21.43%, 21.43%, and 21.43% against ampicillin, chloramphenicol, gentamicin, aztreonam, cefazolin, cefotaxime, and tobramycin, respectively. The ability of essential oils (carvacrol oil 0.01%, basil 0.1%, cinnamon 0.01%, and thymol oil 0.01%) to inhibit the growth of Salmonellae differed significantly at 34.29%, 17.14%, 11.43%, and 1.43%, respectively (p<0.05). Oppositely, essential oils nano-emulsion (thymol 0.01%, carvacrol 0.001%, basil 0.1%, and cinnamon 0.01%) showed no inhibitory effect on the growth of Salmonella species. In conclusion, the interactive action between essential oils and antimicrobial agents approved the ability to enhance the susceptibility of the resistant Salmonella isolates against gentamicin, tobramycin, chloramphenicol, and cefazolin. In addition, the interactive action between essential oils nano-emulsion and antimicrobial agents on resistant Salmonella isolates revealed a complete enhanced effect against cefotaxime and variable enhancement against aztreonam.

Downloads

Download data is not yet available.

Author Biographies

H. S. H. Salam, Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, Beni-Suef University

 

 

A. N. Mohammed, Department of Hygiene, Zoonoses, and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University

 

 

A. A. E. Shehata, Department of Bacteriology, Animal Health Research Institute, El-Fayoum Laboratory, El-Fayoum, Agricultural Research Center, Egypt

 

 

References

Ahmed, A. O., M. A. Raji, P. H. Mamman, C. N. Kwanashie, I. A. Raufu, A. Aremu, & G. J. Akorede. 2019. Salmonellosis: Serotypes, prevalence, and multi-drug resistant profiles of Salmonella enterica in selected poultry farms, Kwara State, North Central Nigeria. Onderstepoort J. Vet. Res. 86:1-8. https://doi.org/10.4102/ojvr.v86i1.1667

Ahmed, J., N. Hiremath, & H. Jacob. 2017. Antimicrobial efficacies of essential oils/ nanoparticles incorporated polylactide films against L. monocytogenes and S. typhimurium on contaminated cheese. Int. J. Food Prop. 20:53-67. https://doi.org/10.1080/10942912.2015.1131165

Badr, H., M. A. A. Abdel Rahman, E. M. Farghaly, A. Gaber, H. Roshdy, & S. A. Nasef. 2015. Characterization of some aerobic bacterial microorganism isolated from newly hatched imported ducklings. Egypt. Poult. Sci. J. 35:1123-1136.

Bertrand, X. & D. Hocquet. 2011. Antibiotic drug resistance: Causes and solutions. EJHP practice. 17: 58-59.

Boskovic, M., N. Zdravkovic, J. Ivanovic, J. Djordjevic, J. Janjic, N. Pavlicevic, & M. Z. Baltic. 2016. Inhibitory effect of thyme and oregano essential oils and some essential oil components on Salmonella Senftenberg and Salmonella Give. Meat technol. 57:67-71.

Chen, H., P. M. Davidson, & Q. Zhong. 2014. Impacts of sample preparation methods on solubility and antilisterial characteristics of essential oil components in milk. Appl. Environ. Microbiol. 80:907-916. https://doi.org/10.1128/AEM.03010-13

Chouhan, S., K. Sharma, & S. Guleria. 2017. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines 4:58. https://doi.org/10.3390/medicines4030058

CLSI. 2020. M100 Performance Standards for Antimicrobial Susceptibility Testing. M100S. 30th ed. Clinical and Laboratory Standards Institute, USA. https://clsi.org/media/3481/m100ed30_sample.pdf.

Cole, E. R., R. B. dos Santos, V. Lacerda Júnior, J. Martins, S. Greco, & A. Cunha Neto. 2014. Chemical composition of essential oil from ripe fruit of Schinus terebinthifolius raddi and evaluation of its activity against wild strains of hospital origin. Braz. J. Microbiol. 45:821-828. https://doi.org/10.1590/S1517-83822014000300009

Cox, N. A., L. J. Richardson, R. J. Buhr, J. K. Northcutt, J. S. Bailey, P. F. Cray, & K. L. Hiett. 2007. Recovery of Campylobacter and Salmonella serovars from the spleen, liver and gallbladder and ceca of six- and eight-week-old commercial broilers. J. Appl. Poult. Res. 16:477-480. https://doi.org/10.3382/japr.2006-00123

Du, E., L. Gan, Z. Li, W. Wang, D. Liu, & Y. Guo. 2015. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. J. Anim. Sci. biotechnol. 6:1-12. https://doi.org/10.1186/s40104-015-0055-7

EFSA Panel on Biological Hazards (EFSA BIOHAZ Panel), K. Koutsoumanis, A. Allende, A. Alvarez-Ordonez, D. Bolton, S. Bover-Cid, M. Chemaly, A. De Cesare, L. Herman, F. Hilbert, R. Lindqvist, M. Nauta, L. Peixe, G. Ru, M. Simmons, P. Skandamis, E. Suffredini, J. Dewulf, T. Hald, V. Michel, T. Niskanen, A. Ricci, E. Snary, F. Boelaert, W Messens, & R. Davies. 2019. Salmonella control in poultry flocks and its public health impact. E. J. EFSA. 17:5596. https://doi.org/10.2903/j.efsa.2019.5596

Eid, S. 2019. Free ranging household ducks, an overview on enteric bacterial and parasitic infections. Assiut Vet. Med. J. 65:150-170. https://doi.org/10.21608/avmj.2019.168994

Elshafie, H.S., N. Ghanney, S.M. Mang, A. Ferchichi, & I. Camele. 2016. An in vitro attempt for controlling severe phytopathogens and human pathogens using essential oils from mediterranean plants of genus schinus. J. Med. Food. 19:266-273. https://doi.org/10.1089/jmf.2015.0093

Elsotohy, M. E. M. 2019. Molecular characterization of Salmonella Enterica isolated from broilers. Thesis (PH.D.). Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Egypt. p. 166.

Elyemni, M., B. Louaste, I. Nechad, T. Elkamli, A. Bouia, M. Taleb, M. Chaouch, & N. Eloutassi. 2019. Extraction of essential oils of Rosmarinus officinalis L.by two different methods: Hydrodistillation and microwave assisted hydrodistillation. Sci. World J. https://doi.org/10.1155/2019/3659432

European Food Safety Authority (EFSA), & European Centre for Disease Prevention and Control, (ECDC). 2016. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J. 13:4329. https://doi.org/10.2903/j.efsa.2015.4329

Ghosh, V., S. Saranya, A. Mukherjee, & N. Chandrasekaran. 2013. Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J. Nanosci. 13:114-122. https://doi.org/10.1166/jnn.2013.6701

Grimont, P. A. & F. Weill. 2007. Antigenic formulas of the Salmonella serovars. 9th ed. WHO, Collaborating Centre for Reference and Research on Salmonella, Paris, France.

Guarda, A., J.F. Rubilar, J. Miltz, & M. J. Galotto. 2011. The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food Microbiol. 146: 144-150. https://doi.org/10.1016/j.ijfoodmicro.2011.02.011

Guibourdenche, M., P. Roggentin, M. Mikoleit, P. I. Fields, J. Bockemiihl, P. A. D. Grimont, & F. Weill. 2010. Supplement 2003-2007 (No.47) to the white-Kauffmann-Le Minor scheme. Res Microbiol. 161:26-29. https://doi.org/10.1016/j.resmic.2009.10.002

Hendriksen, R. S., A. R. Vieira, S. Karlsmose, D. M. A. L. F. Wong, A. B. Jensen, H. C. Wegener, & F. M. Aarestrup. 2011. Global monitoring of Salmonella serovar distribution from the World Health Organization global foodborne infections network country data bank: Results of quality assured laboratories from 2001 to 2007. Foodborne Pathog. Dis. 8:887-900. https://doi.org/10.1089/fpd.2010.0787

Hessen, A. H. A. 2006. Evaluation of Organic Acids in Prevention and Control of Paratyphoid Infection in Chicken Flocks. Theses (M.V.Sc.). Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Egypt. p.125.

Hossain, M. A., M. R. Amin, M. D. I. Khan, M. L. Mollah, & M. A. Amin. 2015. Occurrences, treatment, and antibiotic resistant pattern of colibacillosis and salmonellosis in broiler. J. Biosci. Agric. Res. 4:67-73. https://doi.org/10.18801/jbar.040215.44

Hussein, J., M. El-Bana, E. Refaat, & M. E. El-Naggar. 2017. Synthesis of carvacrol-based nanoemulsion for treating neurodegenerative disorders in experimental diabetes. J. Funct. Foods. 37:441-448. https://doi.org/10.1016/j.jff.2017.08.011

Idris, M., U. Huzaifa, H. Hamisu, & S. Zubaida. 2015. Nanoencapsulation of essential oils with enhanced antimicrobial activity: A new way of combating antimicrobial resistance. J. Pharmacogn. Phytochem. 4:165-170.

ISO 6579. 2002. E 4th ed. Microbiology - General guidance on methods for the detection of Salmonella, International Organization for Standardization, Geneve, Switzerland.

Kumari S., R. V. Kumaraswamy, R. C. Choudhary, S. S. Sharma, A. Pal, R. Raliya, P. Biswas, & V. Saharan. 2018. Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean. Sci. Rep. 8:6650. https://doi.org/10.1038/s41598-018-24871-5

Kumar, Y., V. Singh, G. Kumar, N. K. Gupta, & A. K. Tahlan. 2019. Serovar diversity of Salmonella among poultry. Indian J Med Res. 150:92-95. https://doi.org/10.4103/ijmr.IJMR_1798_17

Medhat, D., H. A. El-mezayen, M. E. El-Naggar, A. Farrag, M. E. Abdelgawad, J. Hussein, & M. H. Kamal. 2019. Evaluation of urinary 8-hydroxy-2-deoxyguanosine level in experimental Alzheimer’s disease: Impact of carvacrol nanoparticles. Mol. Biol. Rep. 46:4517-4527. https://doi.org/10.1007/s11033-019-04907-3

Mshelbwala, F. M., N. D. Ibrahim, S. N. Saidu, A. A. Azeez, P. A. Akinduti, C. N. Kwanashie, A. K. F. Kadiri, M. Muhammed, I. O. Fagbamila, & P. D. Luka. 2017. Motile Salmonella serotypes causing high mortality in poultry farms in three South-Western States of Nigeria. Vet. Rec. Open 4:e000247. https://doi.org/10.1136/vetreco-2017-000247

Osman, K. M., A. M. M. Yousef, M. M. Aly, & M. I. Radwan. 2010. Salmonella spp. infection in imported 1-day-old chicks, ducklings, and turkey poults: a public health risk. Foodborne pathog. Dis. 7:383-90. https://doi.org/10.1089/fpd.2009.0358

Pathania, R., H. Khan, R. Kaushik, & M. A. Khan. 2018. Essential oil nanoemulsions and their antimicrobial and food applications. Curr. Res. Nutr. Food Sci. 6:626-643. https://doi.org/10.12944/CRNFSJ.6.3.05

Pongsumpun, P., S. Iwamoto, & U. Siripatrawan. 2019. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. ULTRASON SONOCHEM. 60. https://doi.org/10.1016/j.ultsonch.2019.05.021

Quinn P. J., B. K. Markey, M. E. Carter, W. J. C. Donnelly, F. C. Leonard, & D. Maguire. 2002. Veterinary Microbiology and Microbial Disease. Blackwell, New Jersey. p. 113-116.

Rattanachaikunsopon, P. & P. Phumkhachorn. 2010. Antimicrobial Activity of Basil (Ocimum basilicum) Oil against Salmonella enteritidis in Vitro and in Food. Biosci. Biotechnol. Biochem. 74:1200-1204. https://doi.org/10.1271/bbb.90939

Ribeiro, S. O., V. Fontaine, V. Mathieu, A. Zhiri, D. Baudoux, C. Stevigny, & F. Souard. 2020. Antibacterial and cytotoxic activities of ten commercially available essential oils. Antibiotics. 9:717. https://doi.org/10.3390/antibiotics9100717

Rusenova, N. & P. Parvanov. 2009. Antimicrobial activities of twelve essential oils against microorganisms of veterinary importance. Trakia J. Sci. 7:37-43.

Sakkas, H. & C. Papadopoulou. 2017. Antimicrobial activity of basil, oregano, and thyme essential oils. J. Microbiol. Biotechnol. 27:429-438. https://doi.org/10.4014/jmb.1608.08024

Sedeik, M. E., N. A. El-shall, A. M. Awad, S. M. Elfeky, M. E. Abd El-Hack, E. O. S. Hussein, A. N. Alowaimer, & A. A. Swelum. 2019. Isolation, conventional and molecular characterization of Salmonella spp. from newly hatched broiler chicks. AMB Expr. 9:136. https://doi.org/10.1186/s13568-019-0821-6

Shekhar, C. 2018. Global impact of salmonellosis on health and economy. (Special Issue- 4) International Conference on Food Security and Sustainable Agriculture (Thailand on 21-24 December 2018). J. Pharmacogn. Phytochem. SP4:93-96.

Soković, M., J. Glamočlija, P. D. Marin, D. Brkić, & L. J. L. D. van Griensven. 2010. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 15:7532-7546. https://doi.org/10.3390/molecules15117532

Sotelo-Boy’as, M. E., G. Valverde-Aguilar, M. Plascencia-Jatomea, Z. N. Correa-Pacheco, A. Jim’enez-Aparicio, J. Solorza-Feria, L. Barrera-Necha, & S. Bautista-Ba˜nos. 2015. Characterization of chitosan nanoparticles added with essential oils. In vitro effect on Pectobacterium carotovorum. Rev. Mex. Ing. Quim. 14:589-599.

Van de Vel, E., I. Sampers, & K. Raes. 2019. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci. Nutr. 59:357-378. https://doi.org/10.1080/10408398.2017.1371112

Wibisono, F. M., F. J. Wibisono, M. H. Effendi, H. Plumeriastuti, A. R. Hidayatullah, E. B. Hartadi, & E. D. Sofiana. 2020. A Review of salmonellosis on poultry farms: Public health importance. Sys. Rev. Pharm. 11:481-486.

Wu, Y., Y. Luo, & Q. Wang. 2012. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid-liquid dispersion method. LWT-Food Sci. Technol. 48: 283-290. https://doi.org/10.1016/j.lwt.2012.03.027

Yang, J., Z. Ju, Y. Yang, X. Zhao, Z. Jiang, & S. Sun. 2019. Serotype, antimicrobial susceptibility, and genotype profiles of Salmonella isolated from duck farms, and a slaughterhouse in Shandong province, China. BMC Microbiology 19:202. https://doi.org/10.1186/s12866-019-1570-z

Published
2021-11-12
How to Cite
SalamH. S. H., MohammedA. N., HosniA. R., & ShehataA. A. E. (2021). Tracking of Resistant Salmonella Species in Poultry Farms: New Method of Control Using Essential Oils Nano-Emulsion Conjugated with Antimicrobial Agents. Tropical Animal Science Journal, 44(4), 489-501. https://doi.org/10.5398/tasj.2021.44.4.489