Molecular Discrimination between Organic and Conventional Liquid Milk Products in Thailand Using ¹H-NMR Metabolomics Approach

T. Phuenpong, M. Kongboonkird, K. Duangmal, W. Lerdvorasap, M. Suksawwawimon, W. Mekboonsonglarp, J. Nuamchit, N. Chantaprasarn, S. Settachaimongkon

Abstract

The aims of this study were to characterize and compare non-volatile polar metabolite profiles of organic and conventional liquid milk products using a non-targeted proton nuclear magnetic resonance (1H-NMR) metabolomics approach. Pasteurized plain-liquid milk products from 10 different brands available in Thai marketplace were analyzed for their major chemical compositions and 1H-NMR derived metabolome data. Results demonstrated no specific trend for differentiation between organic and conventional milk samples based on their pH, fat, protein, lactose, and milk solid-not-fat compositions. A total of 45 non-volatile polar metabolites in milk samples were identified by 1H-NMR technique. The chemometric analysis allowed discrimination between organic and conventional milk samples based on their 1H-NMR metabolite profiles. Changes in the relative concentration of formate, betaine, dimethyl sulfone, 2-oxoglutarate, creatine, pyruvate, butyrate, proline, acetoacetate, alanine, glycerophosphocholine, carnitine, and hippurate were statistically identified as potential biomarkers accountable for the discrimination between organic and conventional milk samples in this study. Variations of these compounds might be the reflections of animal diets, rumen fermentation, and physiological adaptation of the cows raised in organic dairy farming systems. Our findings provide new insights and support the effectiveness of using a non-targeted 1H-NMR combined with chemometrics to investigate the molecular authenticity of organic food products.

References

Balthazar, C. F., J. T. Guimarães, R. S. Rocha, T. C. Pimentel, R. P. C. Neto, M. I. B. Tavares, J. S. Graça, E. G. Alves Filho, M. Q. Freitas, E. A. Esmerino, D. Granato, S. Rodrigues, R. S. L. Raices, M. C. Silva, A. S. Sant’Ana, & A. G. Cruz. 2021. Nuclear magnetic resonance as an analytical tool for monitoring the quality and authenticity of dairy foods. Trends Food Sci. Technol. 108:84-91. https://doi.org/10.1016/j.tifs.2020.12.011

Boudonck, K., M. Mitchell, J. Wulff, & J. Ryals. 2009. Characterization of the biochemical variability of bovine milk using metabolomics. Metabolomics 5:375-386. https://doi.org/10.1007/s11306-009-0160-8

Capuano, E., R. Boerrigter-Eenling, G. van der Veer, & S. M. van Ruth. 2013. Analytical authentication of organic products: An overview of markers. J. Sci. Food Agric. 93:12-28. https://doi.org/10.1002/jsfa.5914

Capuano, E., R. Gravink, R. Boerrigter-Eenling, & S. M. van Ruth. 2015. Fatty acid and triglycerides profiling of retail organic, conventional and pasture milk: Implications for health and authenticity. Int. Dairy J. 42:58-63. https://doi.org/10.1016/j.idairyj.2014.11.002

Chung, I. M., J. K. Kim, C. T. Yarnes, Y. J. An, C. Kwon, S. Y. Kim, Y. J. Yang, H. Y. Chi, & S. H. Kim. 2019. Fatty acid- and amino acid-specific isotope analysis for accurate authentication and traceability in organic milk. J. Agric. Food Chem. 67:711-722. https://doi.org/10.1021/acs.jafc.8b05063

Dursun, A., Z. Güler, & Y. E. Şekerli. 2017. Characterization of volatile compounds and organic acids in ultra-high-temperature milk packaged in tetra brik cartons. Int. J. Food Prop. 20:1511-1521. https://doi.org/10.1080/10942912.2016.1213280

Erich, S., S. Schill, E. Annweiler, H. U. Waiblinger, T. Kuballa, D. W. Lachenmeier, & Y.B. Monakhova. 2015. Combined chemometric analysis of 1H-NMR, 13C-NMR and stable isotope data to differentiate organic and conventional milk. Food Chem. 188:1-7. https://doi.org/10.1016/j.foodchem.2015.04.118

Faulkner, A. & J. L. Clapperton. 1981. Changes in the concentration of some minor constituents of milk from cows fed low- or high-fat diets. Comp. Biochem. Physiol. A Physiol. 68:281-283. https://doi.org/https://doi.org/10.1016/0300-9629(81)90355-8

Foroutan, A., A. C. Guo, R. Vazquez-Fresno, M. Lipfert, L. Zhang, J. Zheng, H. Badran, Z. Budinski, R. Mandal, B. N. Ametaj, & D. S. Wishart. 2019. Chemical composition of commercial cow’s milk. J. Agric. Food Chem. 67:4897-4914. https://doi.org/10.1021/acs.jafc.9b00204

Foroutan, A., C. Fitzsimmons, R. Mandal, H. Piri‐moghadam, J. Zheng, A. Guo, C. Li, L. L. Guan, & D. S. Wishart. 2020. The bovine metabolome. Metabolites 10:1-26. https://doi.org/10.3390/metabo10060233

Goldansaz, S. A., A. C. Guo, T. Sajed, M. A. Steele, G. S. Plastow, & D. S. Wishart. 2017. Livestock metabolomics and the livestock metabolome: A systematic review. PLoS ONE 12:Article No. e0177675. https://doi.org/10.1371/journal.pone.0177675

Klein, M. S., N. Buttchereit, S. P. Miemczyk, A.-K. Immervoll, C. Louis, S. Wiedemann, W. Junge, G. Thaller, P. J. Oefner, & W. Gronwald. 2012. NMR metabolomic analysis of dairy cows reveals milk glycerophosphocholine to phosphocholine ratio as prognostic biomarker for risk of ketosis. J. Proteome Res. 11:1373-1381. https://doi.org/10.1021/pr201017n

Lees, H. J., J. R. Swann, I. D. Wilson, J. K. Nicholson, & E. Holmes. 2013. Hippurate: The natural history of a mammalian–microbial cometabolite. J. Proteome Res. 12:1527-1546. https://doi.org/10.1021/pr300900b

Li, Q., Z. Yu, D. Zhu, X. Meng, X. Pang, Y. Liu, R. Frew, H. Chen, & G. Chen. 2017. The application of NMR-based milk metabolite analysis in milk authenticity identification. J. Sci. Food Agric. 97:2875-2882. https://doi.org/10.1002/jsfa.8118

Liu, N., A. M. Pustjens, S. W. Erasmus, Y. Yang, K. Hettinga, & S. M. van Ruth. 2020. Dairy farming system markers: The correlation of forage and milk fatty acid profiles from organic, pasture and conventional systems in the Netherlands. Food Chem. 314:Article No. 126153. https://doi.org/10.1016/j.foodchem.2019.126153

Lu, J., E. Antunes Fernandes, A. E. Paez Cano, J. Vinitwatanakhun, S. Boeren, T. van Hooijdonk, A. van Knegsel, J. Vervoort, & K. A. Hettinga. 2013. Changes in milk proteome and metabolome associated with dry period length, energy balance, and lactation stage in postparturient dairy cows. J. Proteome Res. 12:3288–3296. https://doi.org/10.1021/pr4001306

Luangwilai, M., K. Duangmal, N. Chantaprasarn, & S. Settachaimongkon. 2021. Comparative metabolite profiling of raw milk from subclinical and clinical mastitis cows using 1H-NMR combined with chemometric analysis. Int. J. Food Sci. Tech. 56:493-503. https://doi.org/10.1111/ijfs.14665

Magan, J. B., T. F. O’callaghan, J. Zheng, L. Zhang, R. Mandal, D. Hennessy, M. A. Fenelon, D. S. Wishart, A. L. Kelly, & N. A. McCarthy. 2019. Impact of bovine diet on metabolomic profile of skim milk and whey protein ingredients. Metabolites 9. https://doi.org/10.3390/metabo9120305

Ministry of Public Health (Thailand). 2013. Notification of the Ministry of Public Health (No. 350): Cow’s milk (Version 2013). http://food.fda.moph.go.th/law/data/announ_moph/V.English/No.350-56_cow_milk.pdf. [20 December 2020].

National Bureau of Agricultural Commodity and Food Standards (Thailand). 2010. Thai Agricultural Standard (TAS 6003-2010): Raw cow milk. https://www.acfs.go.th/files/files/commodity-standard/20190607132619_234365.pdf. [20 December 2020].

National Bureau of Agricultural Commodity and Food Standards (Thailand). 2011. Thai Agricultural Standard (TAS 9000-2011): Organic agriculture part II: Organic livestock. http://www.acfs.go.th/standard/download/ORGANIC-PART-2_LIVESTOCK_2554.pdf. [19 April 2021].

O’Donnell, A. M., K. P. Spatny, J. L. Vicini, & D. E. Bauman. 2010. Survey of the fatty acid composition of retail milk differing in label claims based on production management practices. J. Dairy Sci. 93:1918-1925. https://doi.org/10.3168/jds.2009-2799

O’Callaghan, T. F., R. Vázquez-Fresno, A. Serra-Cayuela, E. Dong, R. Mandal, D. Hennessy, S. McAuliffe, P. Dillon, D. S. Wishart, C. Stanton, & R.P. Ross. 2018. Pasture feeding changes the bovine rumen and milk metabolome. Metabolites 8: Article No. 27. https://doi.org/10.3390/metabo8020027

Rocchetti, G., A. Gallo, M. Nocetti, L. Lucini, & F. Masoero. 2020. Milk metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to discriminate different cows feeding regimens. Food Res. Int. 134:Article number 109279. https://doi.org/10.1016/j.foodres.2020.109279

Schwendel, B. H., T. J. Wester, P. C. H. Morel, M. H. Tavendale, C. Deadman, N. M. Shadbolt, & D. E. Otter. 2015. Invited review: Organic and conventionally produced milk-An evaluation of factors influencing milk composition. J. Dairy Sci. 98:721-746. https://doi.org/10.3168/jds.2014-8389

Settachaimongkon, S., N. Wannakajeepiboon, P. Arunpunporn, W. Mekboonsonglarp, & D. Makarapong. 2021. Changes in bovine colostrum metabolites during early postpartum period revealed by ¹H-NMR metabolomics approach. Trop. Anim. Sci. J. 44: 229-239. https://doi.org/10.5398/tasj.2021.44.2.229

Settachaimongkon, S., M. J. R. Nout, E. C. Antunes Fernandes, K. A. Hettinga, J. M. Vervoort, T. C. M. van Hooijdonk, M. H. Zwietering, E. J. Smid, & H. J. F. van Valenberg. 2014. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. Int. J. Food Microbiol. 177:29-36. https://doi.org/http://dx.doi.org/10.1016/j.ijfoodmicro.2014.02.008

Settachaimongkon, S., H. J. F. van Valenberg, & E. J. Smid. 2017. Metabolomics as an Emerging Strategy for the Investigation of Yogurt Components. In N. P. Shah (Ed.). Yogurt in Health and Disease Prevention. Academic Press, London. pp. 427-449. https://doi.org/10.1016/B978-0-12-805134-4.00025-0

Shah, A. M., J. Ma, Z. Wang, H. Zou, R. Hu, & Q. Peng. 2020. Betaine supplementation improves the production performance, rumen fermentation, and antioxidant profile of dairy cows in heat stress. Animals 10:634. https://doi.org/10.3390/ani10040634

Smigic, N., I. Djekic, I. Tomasevic, N. Stanisic, A. Nedeljkovic, V. Lukovic, & J. Miocinovic. 2017. Organic and conventional milk – insight on potential differences. Br. Food J. 119:366-376. https://doi.org/10.1108/BFJ-06-2016-0237

Sun, H. Z., D. M. Wang, B. Wang, J. K. Wang, H. Y. Liu, L. L. Guan, & J. X. Liu. 2015. Metabolomics of four biofluids from dairy cows: Potential biomarkers for milk production and quality. J. Proteome Res. 14:1287-1298. https://doi.org/10.1021/pr501305g

Sundekilde, U. K., N. A. Poulsen, L. B. Larsen, & H. C. Bertram. 2013. Nuclear magnetic resonance metabonomics reveals strong association between milk metabolites and somatic cell count in bovine milk. J. Dairy Sci. 96:290-299. https://doi.org/http://dx.doi.org/10.3168/jds.2012-5819

Tenori, L., C. Santucci, G. Meoni, V. Morrocchi, G. Matteucci, & C. Luchinat. 2018. NMR metabolomic fingerprinting distinguishes milk from different farms. Food Res. Int. 113:131-139. https://doi.org/10.1016/j.foodres.2018.06.066

Thongplew, N., C. S. A. Kris van Koppen, & G. Spaargaren. 2016. Transformation of the dairy industry toward sustainability: The case of the organic dairy industries in the Netherlands and Thailand. Environ. Dev. 17:6-20. https://doi.org/10.1016/j.envdev.2015.11.005

Trimigno, A., C. B. Lyndgaard, G. A. Atladóttir, V. Aru, S. B. Engelsen, & L. K. H. Clemmensen. 2020. An NMR metabolomics approach to investigate factors affecting the yoghurt fermentation process and quality. Metabolites 10:1-16. https://doi.org/10.3390/metabo10070293

Tsiafoulis, C. G., C. Papaemmanouil, D. Alivertis, O. Tzamaloukas, D. Miltiadou, S. Balayssac, M. Malet-Martino, & I. P. Gerothanassis. 2019. NMR-based metabolomics of the lipid fraction of organic and conventional bovine milk. Molecules 24:Article number 1067. https://doi.org/10.3390/molecules24061067

Vallverdú-Queralt, A. & R. M. Lamuela-Raventós. 2016. Foodomics: A new tool to differentiate between organic and conventional foods. Electrophoresis 37:1784-1794. https://doi.org/10.1002/elps.201500348

Villeneuve, M. P., Y. Lebeuf, R. Gervais, G. F. Tremblay, J. C. Vuillemard, J. Fortin, & P. Y. Chouinard. 2013. Milk volatile organic compounds and fatty acid profile in cows fed timothy as hay, pasture, or silage. J. Dairy Sci. 96:7181-7194. https://doi.org/10.3168/jds.2013-6785

Walker, G. P., F. R. Dunshea, & P.T. Doyle. 2004. Effects of nutrition and management on the production and composition of milk fat and protein: A review. Aust. J. Agric. Res. 55:1009-1028. https://doi.org/10.1071/AR03173

Wishart, D. S. 2008. Metabolomics: applications to food science and nutrition research. Trends Food Sci. Technol. 19:482-493. https://doi.org/10.1016/j.tifs.2008.03.003

Xi, X., L. Y. Kwok, Y. Wang, C. Ma, Z. Mi, & H. Zhang. 2017. Ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry MSE-based untargeted milk metabolomics in dairy cows with subclinical or clinical mastitis. J. Dairy Sci. 100:4884-4896. https://doi.org/10.3168/jds.2016-11939

Xu, W., A. Van Knegsel, E. Saccenti, R. Van Hoeij, B. Kemp, & J. Vervoort. 2020. Metabolomics of milk reflects a negative energy balance in cows. J. Proteome Res. 19:2942-2949. https://doi.org/10.1021/acs.jproteome.9b00706

Authors

T. Phuenpong
M. Kongboonkird
K. Duangmal
W. Lerdvorasap
M. Suksawwawimon
W. Mekboonsonglarp
J. Nuamchit
N. Chantaprasarn
S. Settachaimongkon
sarn.s@chula.ac.th (Primary Contact)
PhuenpongT., KongboonkirdM., DuangmalK., LerdvorasapW., SuksawwawimonM., MekboonsonglarpW., NuamchitJ., ChantaprasarnN., & SettachaimongkonS. (2021). Molecular Discrimination between Organic and Conventional Liquid Milk Products in Thailand Using ¹H-NMR Metabolomics Approach. Tropical Animal Science Journal, 44(4), 478-488. https://doi.org/10.5398/tasj.2021.44.4.478

Article Details

List of Cited By :

Crossref logo