Environmental Monitoring of Zoonotic Fungal Infection in Broiler Chickens: Novel Approach to Control using Nano-fungicide Composite

A. N. Mohammed, G. K. Abdel-Latef

Abstract

Control of fungal infections has not taken much attention compared to bacterial and viral pathogens inflicting significant economic losses to the poultry sectors as well as direct harms to human health due to their zoonotic implication. This study aimed to investigate the existence of fungal pathogens in broiler chicks dropping and their environment. As well, evaluate the efficiency of Terminator disinfectant (coco-benzyl-dimethyl ammonium chlorides and glutaraldehyde), nano copper oxide (CuO NPs), and Terminator/ nano copper oxide (Terminator/CuO NPs) on the fungal growth inhibition to control resistant fungus to antifungal agents. All samples (n= 320) were collected from chicks dropping, their environment (air, water, feeds, litter, drinkers, and feeders) as well, the attendant’s hand swabs for isolation and identification of fungal pathogens. The susceptibility pattern of 65 strains of fungal isolates to antifungal agents, terminator disinfectant, and nano-fungicide composites was determined by the disc diffusion assay and broth micro-dilution method. All isolates were highly resistant to voriconazole antifungal drugs, whilst Aspergillus fumigatus (A. fumigatus) was resistant (100%) to fluconazole. Furthermore, the sensitivity of Aspergillus terreus (A. terreus) and Penicillium corylophilum (P. corylophilum) was 0.0% to fluconazole, and amphotericin-B. Whilst the antifungal activity of Terminator/CuO NPs against fungal pathogens proved its lethal effect (100%) against all fungal isolates at 0.5 mg/mL compared to the efficiency of both Terminator at 1:50 and CuO NPs at 2.0 mg/mL was not exceeded 84.6% and 76.9%, respectively against all fungal strains. In conclusion, nano-fungicide is a promising product for the prevention of fungal pathogens in broiler chickens and their environment. The control of zoonotic resistant fungus using novel nano-fungicide composite (Terminator/CuO NPs) at 0.5 mg/mL concentration was efficiently achieved compared to nano copper oxide at 2.0 mg/mL.

References

Abd El Tawab, A. A., A. A. A. Maarouf, F. I. El-Hofy, & K. S. M. Ahmed. 2015. Molecular characterization of some fungi isolated from broiler chicken farms. Benha Vet. Med. J. 29: 106-118.https://doi.org/10.21608/bvmj.2015.31682

Aliyu R. M., M. B. Abubakar, Y. Yakubu, A. B. Kasarawa, N. Lawal, M. B. Bello, & A. Y. Fardami. 2016. Prevalence of potential toxigenic Aspergillus species isolated from poultry feeds in Sokoto metropolis. Sokoto J. Vet. Sci. 14: 39-44. https://doi.org/10.4314/sokjvs.v14i1.7

Allaker, R. P. 2010. The use of nanoparticles to control oral biofilm formation. J. Dent. Res. 89: 1175-1186. https://doi.org/10.1177/0022034510377794

Amiri, M., Z. Etemadifar, A. Daneshkazemi, & M. Nateghi. 2017. Antimicrobial effect of copper oxide Nanoparticles on some oral bacteria and candida species. J. Dent. Biomater. 4: 347-352.

Answar, K. P., A. Malik, & H. K. Subwin. 2012. Profile of candidiasis in HIV infected patients. Iran J. microbiol. 4: 204-209.

Arne, P., S. Thierry, D. Wang, M. Deville, & G. Le Loch. 2011. Aspergillus fumigatus in poultry. Int. J. Microbiol. 2011: 14. https://doi.org/10.1155/2011/746356

Asfaw, M. & D. Dawit. 2017. Review on major fungal disease of poultry. Br. J. Poult. Sci. 6: 16-25.

Azarakhsh, Y., A. Sabokbar, & M. Bayat. 2011. Incidence of the most common toxigenic Aspergillus species in broiler feeds in Kermanshah Province, West of Iran. Glob. Vet. 6: 73-77.

Barnett, H. L. & B. B. Hunter. 1998. Illustrated Genera of Imperfect Fungi, fourth edition, Minn. Minneapolis Burgnees Publishing Company, Minneapolis M. N. p. 241.

Beemaert, L. A., F. Pasmans, L. Van Waeyenberghe, F. Haesebrouck, & A. Martel. 2010. Asperigillosis infection in birds: A review. Avian Pathol. 39: 325-331. https://doi.org/10.1080/03079457.2010.506210

Brycki, B., I. Kowalczyk, & A. Kozirog. 2011. Synthesis, molecular structure, spectral properties and antifungal activity of polymethylene-α, ω-bis (N, N-dimethyl-Ndodecyloammonium bromides). Molecules 16: 319-335. https://doi.org/10.3390/molecules16010319

Carter, G. R. & J. R. Cole. 1990. Diagnostic Procedure in Veterinary Bacteriology and Mycology. 5th Ed. Academic Press Inc, USA. p. 372-373.

Chang, Y. N., M. Zhang, L. Xia, J. Zhang, & G. Xing. 2012. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5: 2850-2871. https://doi.org/10.3390/ma5122850

Chowdhary, A., S. Kathuria, K. Agarwal, N. Sachdeva, P. K. Singh, S. Jain, & J. F. Meis. 2014. Voriconazole-resistant Penicillium oxalicum: an emerging pathogen in immunocompromised hosts. Open Forum Infect. Dis. 1: 29. https://doi.org/10.1093/ofid/ofu029

Cioffi, N. & M. Rai. 2012. Nano-Antimicrobials: Progress and Prospects. 1st Ed. Springer Berlin Heidelberg, Berlin, Germany. https://doi.org/10.1007/978-3-642-24428-5

Clinical and Laboratory Standards Institute. 2008. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast; Approved Standard-Third Edition. CLSI document M27-A3. Clinical and Laboratory Standards Institute, Wayne.

Clinical and Laboratory Standards Institute. 2009. Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts; Approved Guideline 2nd. Clinical and Laboratory Standards Institute, Wayne.

Davis, B. D., R. Dulbecco, H. N. Eisen, & H. S. Ginsberg. 1990. Microbiology. Subsequent edition. Lippincott Williams & Wilkins Publisher, Philadelphia.

De Hoog, C., J. Guarro , G. Gené, & M. J. Figueiras. 2000. Atlas of Clinical Fungi. 2nd ed. Centraalbureau voor Schimmelcultures, Utrecht.

Dhama, K., S. Chakraborty, A. K. Verma, R. Tiwari , R. Barathidasan , A. Kumar, & S. D. Singh. 2013. Fungal/mycotic diseases of poultry-diagnosis, treatment, and control: A review. PJBS 16: 1626-1640. https://doi.org/10.3923/pjbs.2013.1626.1640

Eshed, M., J. Lellouche, S. Matalon, A. Gedanken, & E. Banin. 2012. Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model. Langmuir 28:12288-12295. https://doi.org/10.1021/la301432a

Ezekwueche, S. N., C. U. Umedum, C. C. Uba, & I. F. Anagor. 2018. Fungi isolated from poultry droppings express antagonism against clinical bacteria isolates. Microbiol. Res. J. Intern. 26:1-8. https://doi.org/10.9734/MRJI/2018/46183

Ghareib, M., W. Abdallaha, M. Abu Tahona, & A. Tallimab. 2019. Biosynthesis of copper oxide nanoparticles using the preformed biomass of Aspergillus fumigatus and their antibacterial and photocatalytic activities. Dig. J. Nanomater. Bios. 14: 291 - 303. https://doi.org/10.1049/mnl.2019.0218

Girma, G., M. Abebaw, M. Zemene, Y. Mamuye, & G. Getaneh. 2016. A Review on Aspergillosis in Poultry. J. vet. Sci. Technol. 7:1-5. https://doi.org/10.4172/2157-7579.1000382

Gitika, A., R. Mishra, S. K. Panda, C. Mishra, & P. R. Sahoo. 2019. Evaluation of Antifungal Activity of Curcumin against Aspergillus flavus. Int. J. Curr. Microbiol. App. Sci. 8:2323-2329. https://doi.org/10.20546/ijcmas.2019.807.284

Howett, M. K., E. B. Neely, N. D. Christensen, B. Wigdah, F. C. Krebs, D. Malamud, S. D. Patrick, M. D. Pickel, P. A. Welsh, C. A. Reed, M. G. Ward, L. R. Budgeon, & J. W. Kreider. 1999. A broad spectrum microbiocide with virucidal activity against sexually transmitted viruses. Antimicrob. Agents Chemother. 43:314-321. https://doi.org/10.1128/AAC.43.2.314

Hyde, K. D., A. M. Al-Hatmi, B. Andersen, T. Boekhout, W. Buzina, T.L. Dawson, D.C. Eastwood, E.G. Jones, S. de Hoog, Y. Kang, & J.E. Longcore. 2018. The world’s ten most feared fungi. Fungal Divers. 93:161-194. https://doi.org/10.1007/s13225-018-0413-9

Jeffrey, D. J. 1995. Chemicals used as disinfectants: Active ingredients and enhancing additives. Rev. sci. Tech. 14: 57-74. https://doi.org/10.20506/rst.14.1.828

Jennings, M. C., K. P. Minbiole, & W. M. Wuest. 2015. Quaternary ammonium compounds: An antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS. Infect. Dis. 1: 288-303. https://doi.org/10.1021/acsinfecdis.5b00047

Karimiyan, A., H. Najafzadeh, M. Ghorbanpour, & S. Hekmatimoghaddam. 2015. Antifungal effect of magnesium oxide, zinc oxide, silicon oxide and copper oxide nanoparticles against Candida albicans. Zahedan J. Res. Med. Sci. 17: 29-31. https://doi.org/10.17795/zjrms-2179

Kemoi, E. K., P. Okemo, & C. C. Bii. 2013. Isolation of candida species in domestic chicken (Gallus gallus) droppings in Kabigeriet village, Nakuru county Kenya. Eur. Sci. J. 9:309-318.

Khan, M. F., M. Hameedullah, A. H. Ansari, E. Ahmad, M. B. Lohani, R. H. Khan, M. M. Alam, W. Khan, F. M. Husain, & I. Ahmad. 2014. Flower-shaped ZnO nanoparticles synthesized by a novel approach at near-room temperatures with antibacterial and antifungal properties. Int. J. Nanomedicine. 9: 853-864. https://doi.org/10.2147/IJN.S47351

Khosravi, A. R., H. Shokri, T. Ziglari, A. R. Naeini, Z. Mousavi, & H. Hashemi. 2008. Outbreak of severe disseminated aspergillosis in a flock of ostrich (Struthio camelus). Mycoses. 51: 557-559. https://doi.org/10.1111/j.1439-0507.2008.01504.x

Kullberg, B. J. & M. C. Arendrup. 2015. “Invasive candidiasis”. N. Engl. J. Med. 373: 1445-56. https://doi.org/10.1056/NEJMra1315399

Kunkle, R. A. 2003. Aspergillosis. In: Saif Y. M., H. J. Barnes, J. R. Glisson, A. M. Fadly, L. R. Mc Dougald, & D. E. Swayne (Eds). Diseases of Poultry. 11th edition. Iowa State University Press, Ames. p. 883-895.

Lara, H. H., D. G. Romero-Urbina, C. Pierce, J. L. Lopez-Ribot, M. J. Arellano-Jiménez, & M. Jose-Yacaman. 2015. Effect of silver nanoparticles on Candida albicans biofilms: An ultrastructural study. J. Nanobiotechnol. 13:91. https://doi.org/10.1186/s12951-015-0147-8

Marek J., D. Malinak, R. Dolezal, O. Soukup, M. Pasdiorova, M. Dolezal & K. Kuca. 2015. Synthesis and disinfection effect of the pyridine-4-aldoxime based salts. Molecules 20: 3681-3696. https://doi.org/10.3390/molecules20033681

Misuzu, K., P. Chesenda, Y. Akra, C. Piphat, C. Toru , S. Petchsri, M. Taiga, K. hiroshi , H. Yasuhito, M. Yushitsuru, I. Yutaka, & K. Shungeru. 2004. Environmental isolation of Cryptococcus neoformans from an endemic region of HIV-associated cryptococcosis in Thailand. Yeast 21: 809-812. https://doi.org/10.1002/yea.1112

Perinelli, D. R., D. Petrelli, L. A. Vitali, G. Bonacucina, M. Cespi, D. Vllasaliu, G. Giorgioni, & G. F. Palmieri. 2019. Quaternary ammonium leucine-based surfactants: The effect of a benzyl group on physicochemical properties and antimicrobial activity. Pharmaceutics 11: 287. https://doi.org/10.3390/pharmaceutics11060287

Pernak, J., J. Rogoża, & I. Mirska. 2001. Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides. Eur. J. Med. Chem. 36: 313-320. https://doi.org/10.1016/S0223-5234(01)01226-0

Phiwdanga, K., S. Suphankija, W. Mekprasarta, & P. Wisanu. 2013. Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Proc. 34: 740-5. https://doi.org/10.1016/j.egypro.2013.06.808

Russell, R. & M. Peterson. 2007. Aflatoxin contamination in chilli from Pakistan. Food Control. 18: 817-820. https://doi.org/10.1016/j.foodcont.2006.04.005

Sabino, R., V. M. Faisca, E. Carolino, C. Verissimo, & C. Viegas. 2012. Occupational exposure to Aspergillus by swine and poultry farm workers in Portugal J. Toxicol. Env. Heal. A. 75: 1381-1391. https://doi.org/10.1080/15287394.2012.721170

Saleemi, M. K., M. Z. Khan, A. Khan, & I. Javed. 2010. Mycoflora of poultry feeds and mycotoxins producing potential of Aspergillus species. Pak. J. Bot. 42: 427-434.

Salem, L. M. A. & A. Ali. 2014. Epidemiological study of Aspergillosis in chickens and human contacts in chicken farms at Kalyoubia Governorate. IOSR-JAVS. 7: 20-24. https://doi.org/10.9790/2380-07742024

Steinbach, W. J., D. K. Benjamin, D. P. Jr Kontoyiannis, J. R. Perfect, I. Lutsar, K. A. Marr , M. S. Lionakis, H. A. Torres, H. Jafri, & T. J. Walsh. 2004. Infections due to Aspergillus terreus: A multicenter retrospective analysis of cases. Clin. Infect. Dis. 39: 192-198. https://doi.org/10.1086/421950

Sutton, D. A., S. E. Sanche, S. G. Revankar, A. Q. Fothergill, & M.G. Rinaldi. 2004. In vitro amphotericin B resistance in clinical isolates of Aspergillus terreus, a head-to-head comparison of voriconazole. Clin. Infect. Dis. 39: 743-746.

Walker, G. M. & N. A. White. 2017. In: Kavangh, K. (Ed.), Fungi: Biology and Applications. John Wiley & Sons, West Sussex, England.

Viegas, C., E. Carolino, J. Malta-Vacas, R. Sabino, S. Viegas, & C. Veríssimo. 2012. Fungal contamination of poultry litter: A public health problem. J. Toxicol. Env. Heal. A. 75: 1341-1350. https://doi.org/10.1080/15287394.2012.721165

Wiederhold, N. P. 2017. Antifungal resistance: current trends and future strategies to combat. Infect. Drug Resist. 10:249-259. https://doi.org/10.2147/IDR.S124918

Zaidi, K. U., A. Mani, R. Parmar, & V. Thawani. 2018. Antifungal susceptibility pattern of Candida albicans in human infections. Open Bio. Sci. J. 4: 1-6. https://doi.org/10.2174/2352633501804010001

Ziółkowska, G. & S. Tokarzewski. 2006. Determination of antifungal activity of Enizol: A specific disinfecting preparation. Med. Weter. 62:792-796.

Authors

A. N. Mohammed
asmaa.mohamed2@vet.bsu.edu.eg (Primary Contact)
G. K. Abdel-Latef
MohammedA. N., & Abdel-LatefG. K. (2021). Environmental Monitoring of Zoonotic Fungal Infection in Broiler Chickens: Novel Approach to Control using Nano-fungicide Composite. Tropical Animal Science Journal, 44(3), 336-346. https://doi.org/10.5398/tasj.2021.44.3.336

Article Details