Immune Status and Growth of Broiler Fed Diet with Microparticle Protein Added with Natural Acidifier
Abstract
The present study was conducted to evaluate the feeding effect of diet composed of microparticle protein added with lime juice as an acidifier on immune status and efficiency of protein utilization in relation to the growth of broiler chicken. Dietary treatments tested were P1 was diet with 20% intact protein and CaCO3 as a Ca source, P2 was diet with 20% microparticle protein and eggshell as a Ca source added with 1.2% lime juice, and P3 was diet with 20% microparticle protein and eggshell as a Ca source added with 2.4% lime juice. Variables measured were protein and amino acids digestibility, retentions of N and Ca, fecal Nτ–methyl histidine (Nτ–MH) excretion as a protein turnover index, lymphoid organs, heterophil and lymphocyte (H/L) ratio, immunoglobulin A (IgA) as a body resistance indicator, feed consumption, body weight gain (BWG), and feed conversion ratio (FCR). The experiment was arranged in a completely randomized design with 3 treatments and 8 replications. Data were subjected to analysis of variance and Duncan test at 5% probability. Protein and amino acid digestibility, N, and Ca retentions were significantly (p<0.05) higher in P2 and P3. However, the H/L ratio was significantly (p<0.05) lower in both treatments compared to P1. Bursa fabricius and lymph weights were not difference, but BWG in P2 significantly (p<0.05) increased. In conclusion, protein and some essential amino acids digestibility, N and Ca retentions, IgA, and BWG increase with the decrease in H/L ratio, fecal Nτ–MH, feed consumption, and FCR in broiler fed diet composed of microparticle protein source with additional 1.2 mL acidifier of lime juice.
References
Abdurrahman, Z. H., Y. B. Pramono, & N. Suthama. 2016a. Feeding effect of inulin derived from dahlia tuber combined with Lactobacillus sp. on meat protein mass of crossbred kampong chicken. J. Indones. Trop. Anim. Agric. 41:37-44. https://doi.org/10.14710/jitaa.41.1.37-44
Abdurrahman, Z. H., Y. B. Pramono, & N. Suthama. 2016b. Meat characteristic of crossbred local chicken fed inulin of dahlia tuber and Lactobacillus sp. Med. Pet. 39:112-118. https://doi.org/10.5398/medpet.2016.39.2.112
Adil, S., T. Banday, G. A. Bhat, M. S. Mir, & M. Rehman. 2010. Effect of dietary supplementation of organic acids on performance, intestinal histomorphology, and serum biochemistry of broiler chicken. Vet. Med. Int. 20:1-7. https://doi.org/10.4061/2010/479485
Al-Jaf, K. A. H. & Y. K. Del. 2019. Effect of different feed additives on growth performance and production in livestock. Int. J. Agric. For. 9:16-31.
Amerah, A. M., V. Ravindran, R. G. Lentle, & D. G. Thomas. 2008. Influence of feed particle size on the performance, energy utilization, digestive tract development, and digesta parameters of broiler fed wheat- and corn-based diets. Poult. Sci. 87:2320-2328. https://doi.org/10.3382/ps.2008-00149
Castanon, J. I. R. 2007. History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci. 86:2466-2471. https://doi.org/10.3382/ps.2007-00249
Cholis, M.A., N. Suthama, & B. Sukamto. 2018. Feeding microparticle protein diet combined with Lactobacillus sp. on existence of intestinal bacteria and growth of broiler chickens. J. Indones. Trop. Anim. Agric. 43:265-271. https://doi.org/10.14710/jitaa.43.3.265-271
Dhama, K., R. Tiwari, R. U. Khan, S. Chakraborty, M. Gopi, K. Khartik, M. Saminathan, P. A. Desingu, & L. T. Sunkara. 2014. Growth promoter and novel feed additives improving poultry production and health, bioactives principles and beneficial applications: The trends and advances - A review. Int. J. Pharmacol. 13:129-159. https://doi.org/10.3923/ijp.2014.129.159
Driver, J. P., G. M. Pesti, R. I. Bakalli, & H. M. Edwards, Jr. 2005. Calcium requirements of the modern broiler chicken as influenced by dietary protein and age. Poult. Sci. 84:1629-1639. https://doi.org/10.1093/ps/84.10.1629
Fajrih, N., N. Suthama, & V. D. Yunianto. 2014. Body resistance and productive performances of crossbred local chicken fed inulin of dahlia tubers. Med. Pet. 37: 108-114. https://doi.org/10.5398/medpet.2014.37.2.108
Fleet, J. M. & R. D. Schoch. 2010. Molecular mechanisms for regulation of intestinal Calcium absorption by vitamin D and other factors. Crit. Rev. Clin. Lab. Sci. 47:181-195. https://doi.org/10.3109/10408363.2010.536429
Goh, C. H., T. C. Loh, H. L. Foo, & F. Nobilly. 2020. Fecal microbial population and growth in broiler fed organic acids and palm fat-composed diet. Trop. Anim. Sci. J. 43:151-157. https://doi.org/10.5398/tasj.2020.43.2.151
Hayajneh, F. M. F. 2019. Natural feed additives for broiler chickens. S. Afr. J. Anim. Sci. 49:867-873. https://doi.org/10.4314/sajas.v49i5.9
Huang, C. & H. H. Stein. 2016. Amino acid digestibility in soy protein concentrate with different particle sizes fed to weanling pigs. Pig Progress Res. Report. p. 32-33.
Jambrak, A. R., T. J. Mason, V. Lelas, L. Paniwnyk, & Z. Herceg. 2014. Effect of ultrasound treatment on particle size and molecular weight of whey proteins. J. Food Eng. 121:15-23. https://doi.org/10.1016/j.jfoodeng.2013.08.012
Jamilah, N. Suthama, & L. D. Mahfudz. 2013. Performa produksi dan ketahanan tubuh broiler yang diberi pakan step down dengan penambahan asam sitrat sebagai acidifier. Jurnal Ilmu Ternak dan Veteriner. 18:251-257. (In Indonesian language with English abstract).
Krismiyanto, L., N. Suthama, & H. I. Wahyuni. 2014. Feeding effect of inulin derived from Dahlia variabilis tuber on intestinal microbes in starter period of crossbred native chickens. J. Indones. Trop. Anim. Agric. 39:217-223. https://doi.org/10.14710/jitaa.39.4.217-223
Landers, T. F., B. Cohen, T. E. Wittum, & E. L. Larson. 2012. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 127:4- 22. https://doi.org/10.1177/003335491212700103
Mangisah, I., B. Sukamto, H. I. Wahyuni, I. Estiningdriati, W. Saputro, & L. Krismiyanto. 2016. Nutrient digestibility and performance of male pelung chicken fed rice based ration supplemented with lime (Citrus aurantifolia) juice. Med. Pet. 39:119-124. https://doi.org/10.5398/medpet.2016.39.2.119
Mehdi, Y., M.-P. Letourneau-Montminy, M.-L. Gaucher, Y. Chorfi, G. Suresh, T. Rouissi, S. K. Brar, C. Cot , A. A. Ramirez, & S. Godbout. 2018. Use of antibiotics in broiler production: Global impacts and alternatives. Anim. Nutr. 4:170-178. https://doi.org/10.1016/j.aninu.2018.03.002
Merino-Guzman, R. , J. D. Latorre, R. Delgado, X. Hernandez-Velasco, A. D. Wolfenden, K. D. Teague, L. E. Graham, B. D. Mahaffey, M. F. A. Baxter, B. M. Hargis, & G. Tellez. 2016. Comparison of total immunoglobulin A levels in different samples in Leghorn and broiler chickens. Asian Pac. J. Trop. Biomed. 7:116-120. https://doi.org/10.1016/j.apjtb.2016.11.021
Ndelekwute, E. K. & G. E. Enyenihi. 2017. Lime juice as a source of organic acids for growth and apparent nutrient digestibility of broiler chickens. J. Vet. Med. Surgery 1:1-5.
Ndelekwute, E. K., E. D. Assam, & E. M. Assam. 2018. Apparent nutrient digestibility, gut pH and digesta viscosity of broiler chickens fed acidified water. MOJ Anat. Physiol. 5:250-253. https://doi.org/10.15406/mojap.2018.05.00203
Nourmohammadi, R. & N. Afzali. 2013. Effect of citric acid and microbial phytase on small intestinal morphology in broiler chicken. Ital. J. Anim. Sci. 12:44-47. https://doi.org/10.4081/ijas.2013.e7
Pacheco, W. J., C. R. Stark, P. R. Ferket, & J. Brake. 2013. Evaluation of soybean meal source and particle size on broiler performance, nutrient digestibility, and gizzard development. Poult. Sci. 92:2914-2922. https://doi.org/10.3382/ps.2013-03186
Pan, D. & Z. Yu. 2014. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes. 5:108-119. https://doi.org/10.4161/gmic.26945
Perdinan, A., H. I. Wahyuni, & N. Suthama. 2019. Body resistance and growth performance of broiler fed glucomannan extracted from Amorphophallus onchophyllus Tuber. Trop. Anim. Sci. J. 42:33-38. https://doi.org/10.5398/tasj.2019.42.1.33
Purbarani, S. A., H. I. Wahyuni, & N. Suthama. 2019. Dahlia Inulin and Lactobacillus sp. in step down protein diet on villi development and growth of KUB chickens. Trop. Anim. Sci. J. 42:19-24. https://doi.org/10.5398/tasj.2019.42.1.19
Ravindran, V., L. I. Hew, G. Ravindran, & W. L. Bryden. 1999. A comparison of ileal digesta and excreta analysis for the determination of amino acid digestibility in food ingredients for poultry. Br. Poult. Sci. 40:266-274. https://doi.org/10.1080/00071669987692
Ren, L O., F. Zhao, H. Z. Tan, J. T. Zhao, J. Z. Zhang, & H. F. Zhang. 2012. Effects of dietary protein source on the digestive enzyme activities and electrolyte composition in the small intestinal fluid of chickens. Poult. Sci. 91:1641-1646. https://doi.org/10.3382/ps.2011-02081
Risdianto, D., N. Suthama, E. Suprijatna, & S. Sunarso. 2019. Inclusion effect of ginger and turmeric mixture combined with Lactobacillus spp. isolated from rumen fluid of cattle on health status and growth of broiler. J. Indones. Trop. Anim. Agric. 44:423-433. https://doi.org/10.14710/jitaa.44.4.423-433
Rubio, A. A., J. B. Hess, W. D. Berry, W. A. Dozier III, & W. J. Pacheco. 2020. Effets of corn particle size on broiler performance during the starter, grower, and finisher periods. J. Appl. Poult. Res. 29:352-361. https://doi.org/10.1016/j.japr.2019.11.009
Salim, H. M. D., K. S. Huque, K. M. Kamaruddin, & M. D. A. H. Beg. 2018. Global restriction of using antibiotic growth promoters and alternative strategies in poultry production. Sci. Prog. 101:52-75. https://doi.org/10.3184/003685018X15173975498947
Saputra, Y. A., N. Suthama, & B. Sukamto. 2020. Feeding diets composed of low level microparticle protein derived from fish and soybean meals and using organic calcium added with Lactobacillus acidophilus or citric acid on intestinal condition and performance of broilers. Livest. Res. Rural. Dev. 32:37-53.
Sibbald, I. R. & S. Wolynetz. 1985. Estimates of retained nitrogen used to correct estimates of bioavailable energy. Poult. Sci. 64:1506-1513. https://doi.org/10.3382/ps.0641506
Sivaraman, S. & V. Parady. 2018. Antibiotic Use in Food Animals: Indonesia Overview. ReAct Asia-Pacific Christian Medical College, Vellore, Tamil Nadu. Section C, p. 28.
Steel, R. G. D. & J. H. Torrie. 1991. Principles and Procedures of Statistics: A Biometrical Approach. McGraw‐Hill Book Company, New York, Toronto, London
Suthama, N. 2006. Kajian aspek “protein turnover” tubuh pada ayam Kedu periode pertumbuhan. Med. Pet. 29:47-53. (In Indonesian language with English abstract).
Suthama, N. & P.J. Wibawa. 2018. Amino acids digestibility of pelleted micro-particle protein of fish meal and soybean meal in broiler chickens. J. Indones. Trop. Anim. Agric. 43:169-176. https://doi.org/10.14710/jitaa.43.2.169-176
Weimer, S. L, R. F. Wideman, C. G. Scanes, A. Mauromoustakos, K. D. Christensen, & Y. Vizzier-Thaxton. 2018. An evaluation of methods for measuring stress in broiler chickens. Poult. Sci. 97:3381-3389. https://doi.org/10.3382/ps/pey204
Wilkinson, S. J., P. H. Selle, M. R. Bedford, & A. J. Cowieson. 2013. Separate feeding of calcium improves performance and ileal nutrient digestibility in broiler chicks. Anim. Prod. Sci. CSIRO. Pub. p. A - G. https://doi.org/10.1071/AN12432
Yang, Y., P.A. Iji, & M. Choct. 2009. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. World’s Poult. Sci. J. 65:97-114. https://doi.org/10.1017/S0043933909000087
Yuanita, I., D. Sunarti, H. I. Wahyuni, & N. Suthama. 2019. Feeding Dayak onion (Eleutherine palmifolia) extract and Lactobacillus acidophilus mixture on blood biochemicals, meat quality characteristics and growth performance in broiler chickens. Livest. Res. Rural. Dev. 31:16-22.
Ziaei, N., H. Kermanshahi, & M. PileVar. 2011. Effects of dietary crude protein and calcium/phosphorus content on growth, nitrogen and mineral retention in broiler chickens. Afr. J. Biotechnol. 10:13342-13350.
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.