Feed Intake and Nutrient Digestibility, Rumen Fermentation Profiles, Milk Yield and Compositions of Lactating Dairy Cows Supplemented by Flemingia macrophylla Pellet
Abstract
Feed intake and nutrient digestibility, rumen fermentation profiles, milk yield and compositions of lactating dairy cows fed with Flemingia macrophylla pellet (FMP) were evaluated. Four crossbred dairy cows in early lactation were randomly allocated into a 2×2 factorial arrangement in a 4×4 Latin square design (LSD). The first factor was protein level of concentrate mixtures consisted of two levels, i.e., 14% and 16%. The second factor was supplementation levels of FMP consisted of two levels, i.e., 0 and 150 g/cow/d. There were no interactions between the protein level of concentrate and FMP supplementation on feed intake and digestibility, rumen fermentation profiles, milk yield and composition of lactating dairy cows. The findings revealed that both factors significantly impacted feed intakes. They also significantly increased the digestibility of CP and neutral detergent fiber (NDF). Ruminal ammonia nitrogen and propionate (C3) concentrations were improved (p<0.05), while rumen acetate (C2), the ratio of C2:C3, estimated methane (CH4) production, and protozoal counts were subsequently reduced (p<0.05). Crude protein level and FMP supplementation additionally improved nitrogen absorption and utilization, as well as microbial nitrogen synthesis. Milk production was significantly increased by the FMP feeding. In conclusion, a concentrated mixture with 16% CP along with supplementation of FMP at a dose of 150 g/cow/d could significantly increase rumen fermentation end-products, microbial protein synthesis, mitigated rumen CH4 production, and milk production in lactating dairy cows fed with rice straw.
References
Ahnert, S., U. Dickhoefer, F. Schulz, & A. Susenbeth. 2015. Influence of ruminal Quebracho tannin extract infusion on apparent nutrient digestibility, nitrogen balance and urinary purine derivatives excretion in heifers. Livest. Sci. 177:63–70. https://doi.org/10.1016/j.livsci.2015.04.004
Ampapon, T. & M. Wanapat. 2019. Rambutan fruit peel powder and dietary protein level influencing on fermentation characteristics, nutrient digestibility, ruminal microorganisms and gas production using in vitro fermentation techniques. Trop. Anim. Health Prod. 51:1489-1496. https://doi.org/10.1007/s11250-019-01837-x
Anantasook, N., M. Wanapat, A. Cherdthong, & P. Gunun. 2015. Effect of tannins and saponins in Samanea saman on rumen environment, milk yield and milk composition in lactating dairy cows. J. Anim. Physiol. Anim. Nutr. 99:335–344. https://doi.org/10.1111/jpn.12198
Andersson, M. S., M. Peters, R. Schultze-Kraft, L. H. FRANCO, & C. E. Lascano. 2006. Phenological, agronomic and forage quality diversity among germplasm accessions of the tropical legume shrub Cratylia argentea. J. Agric. Sci. 144:237-248. https://doi.org/10.1017/S0021859606006034
AOAC. 2012. Official Methods of Analysis of AOAC International. 19th ed. Association of Official Analytical Chemists, Arlington.
Barry, T. N. & T. R. Manley. 1984. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep: 2. Quantitative digestion of carbohydrates and proteins. Br. J. Nutr. 51:493-504. https://doi.org/10.1079/BJN19840055
Benchaar, C., T. A. McAllister, & P. Y. Chouinard. 2008. Digestion, ruminal fermentation, Ciliate protozoal populations, and milk production from dairy cows fed Cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. J. Dairy Sci. 91:4765-4777. https://doi.org/10.3168/jds.2008-1338
Burns, R. E. 1971. Method for estimation of tannin in grain sorghum 1. Agron. J. 63:511-512. https://doi.org/10.2134/agronj1971.00021962006300030050x
Chen, X. B., D. J. Kyle, & E. R. Ørskov. 1993. Measurement of allantoin in urine and plasma by high-performance liquid chromatography with pre-column derivatization. J. Chromatogr. B Biomed. Sci. Appl. 617:241-247.
Chen, X. B. & M. J. Gomes. 1995. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivative-An Overview of 215 the Technique Details. Occasional Publication 1992. International Feed Resources Unit, Rowett Research Institute, Aberdeen, UK.
Cieslak, A., P. Zmora, A. Matkowski, I. Nawrot-Hadzik, E. Pers-Kamczyc, M. El-Sherbiny, M. Bryszak, M. Szumacher-Strabe. 2016. Tannins from Sanguisorba officinalis affect in vitro rumen methane production and fermentation. J. Anim. Plant Sci. 26:54–62.
Crichton, N. 1999. Information point: Tukey multiple comparison test. J. Clin. Nurs. 8:299–304.
Crocker, C.L. 1967. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am. J. Med. Technol. 33:361-365.
Dschaak, C. M., C. M. Williams, M. S. Holt, J. S. Eun, A. J. Young, & B. R. Min. 2011. Effects of supplementing condensed tannin extract on intake, digestion, ruminal fermentation, and milk production of lactating dairy cows. J. Dairy Sci. 94:2508-2519. https://doi.org/10.3168/jds.2010-3818
Fagundes, G. M., E. C. Modesto, C. E. M. Fonseca, H. R. P. Lima, & J. P. Muir. 2014. Intake, digestibility and milk yield in goats fed Flemingia macrophylla with or without polyethylene glycol. Small Rumin. Res. 116:88-93. https://doi.org/10.1016/j.smallrumres.2013.10.018
Fagundes, G. M., G. Benetel, K. C. Santos, K. C. Welter, F. A. Melo, J. P. Muir, & I. C. S. Bueno. 2020. Tannin-Rich Plants as Natural Manipulators of Rumen Fermentation in the Livestock Industry. Molecules. 25:2943. https://doi.org/10.3390/molecules25122943
Firkins, J. L., Z. Yu, & M. Morrison. 2007. Ruminal nitrogen metabolism: Perspectives for integration of microbiology and nutrition for dairy. J. Dairy Sci. 90:E1-E16. https://doi.org/10.3168/jds.2006-518
Franzel, S., S. Carsan, B. Lukuyu, J. Sinja, & C. Wambugu. 2014. Fodder trees for improving livestock productivity and smallholder livelihoods in Africa. Curr. Opin. Environ. Sustain. 6:98-103. https://doi.org/10.1016/j.cosust.2013.11.008
Galo, E., S. M. Emanuele, C. J. Sniffen, J. H. White, & J. R. Knapp. 2003. Effects of a polymer-coated urea product on nitrogen metabolism in lactating Holstein dairy cattle. J. Dairy Sci. 86:2154-2162. https://doi.org/10.3168/jds.S0022-0302(03)73805-3
Galyean, M. 1989. Laboratory procedure in Animal Nutrition Research. Department of Animal and Range Science. New Mexico State University, USA. p. 188.
Gunun, P., M. Wanapat, N. Anantasook, & A. Cherdthong. 2016. Effects of condensed tannins in Mao (Antidesma thwaitesianum Muell: Arg.) seed meal on rumen fermentation characteristics and nitrogen utilization in goats. Asian-Australas. J. Anim. Sci. 29:1111–1119. https://doi.org/10.5713/ajas.15.0552
Hawk, P. B., B. L. Oser, & W. H. Summerson. 1976. Practical Physiological Chemistry, 14th ed. McGraw Hill Publishing Company Ltd., London, UK.
Holtshausen, L., A. V. Chaves, K. A. Beauchemin, S. M. McGinn, T. A. McAllister, N. E. Odongo, P. R. Cheeke, & C. Benchaar. 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 92:2809-2821. https://doi.org/10.3168/jds.2008-1843
Hristov, A. N., J. Oh, J. L. Firkins, J. Dijkstra, E. Kebreab, G. Waghorn, H. P. S. Makkar, A. T. Adesogan, W. Yang, W. Lee, P. J. Gerber, B. Henderson, J. M. Tricarico. 2013. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 91:5045–5069. https://doi.org/10.2527/jas.2013-6585
Jonker, J. S., R. A. Kohn, & R. A. Erdman. 1999. Milk urea nitrogen target concentrations for lactating dairy cows fed according to national research council recommendations. J. Dairy Sci. 82:1261-1273. https://doi.org/10.3168/jds.S0022-0302(99)75349-X
Karsli, M. A. & J. R. Russell. 2001. Effects of some dietary factors on ruminal microbial protein synthesis. Turk. J. Vet. Anim. Sci. 25:681-686.
Krämer-Schmid, M., P. Lund, & M. R. Weisbjerg. 2016. Importance of NDF digestibility of whole crop maize silage for dry matter intake and milk production in dairy cows. Anim. Feed Sci. Technol. 219:68-76. https://doi.org/10.1016/j.anifeedsci.2016.06.007
Liu, H., V. Vaddella, & D. Zhou. 2011. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep. J. Dairy Sci. 94:6069–6077. https://doi.org/10.3168/jds.2011-4508
Makkar, H. P. 2003. Effect and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin rich feeds. Small Rumin. Res. 49:241-256. https://doi.org/10.1016/S0921-4488(03)00142-1
Mathew, S., S. Sagatheman, J. Thomas, & G. Mathen. 1997. An HPLC method for estimation of volatile fatty acids of ruminal fluid. Ind. J. Anim. Sci. 67:805-807.
McMahon, L. R., T. A. McAllister, B. P. Berg, W. Majak, S. N. Acharya, J. D. Popp, B. E. Coulman, Y. Wang, & K. J. Cheng. 2000. A review of the effects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Can. J. Plant Sci. 80:469-485. https://doi.org/10.4141/P99-050
Moss, A. R., J. P. Jouany, & J. Newbold. 2000. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 49:231-253. https://doi.org/10.1051/animres:2000119
Mui, N. T., I. Ledin, P. Udén, & D. Van Binh. 2001. Effect of replacing a rice bran–soya bean concentrate with Jackfruit (Artocarpus heterophyllus) or Flemingia (Flemingia macrophylla) foliage on the performance of growing goats. Livest. Prod. Sci. 72:253-262. https://doi.org/10.1016/S0301-6226(01)00223-8
Norrapoke, T., M. Wanapat, & S. Wanapat. 2012. Effects of protein level and mangosteen peel pellets (Mago-pel) in concentrate diets on rumen fermentation and milk production in lactating dairy crossbreds. Asian-Australas. J. Anim. Sci. 25:971. https://doi.org/10.5713/ajas.2012.12053.
Patra, A. K. & J. Saxena. 2009. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr. Res. Rev. 22:204-219. https://doi.org/10.1017/S0954422409990163
Patra, A. K. & J. Saxena. 2010. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry. 71:1198-1222. https://doi.org/10.1016/j.phytochem.2010.05.010
Patra, A. K. & J. Saxena. 2011. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 91:24-37. https://doi.org/10.1002/jsfa.4152
Phesatcha, B., M. Wanapat, K. Phesatcha, T. Ampapon, & S. Kang. 2016. Supplementation of Flemingia macrophylla and cassava foliage as a rumen enhancer on fermentation efficiency and estimated methane production in dairy steers. Trop. Anim. Health Prod. 48:1449-1454. https://doi.org/ 10.1007/s11250-016-1115-5
Poungchompu, O., M. Wanapat, C. Wachirapakorn, S. Wanapat, & A. Cherdthong. 2009. Manipulation of ruminal fermentation and methane production by dietary saponins and tannins from mangosteen peel and soapberry fruit. Arch. Anim. Nutr. 63:389-400. https://doi.org/10.1080/17450390903020406
Ramírez-Avilés, L., F. J. Solorio-Sánchez, C. F. Aguilar-Pérez, A. J. Ayala-Burgos, & J. C. Ku-Vera. 2019. Leucaena leucocephala feeding systems for cattle production in Mexico. Trop. grassl.-Forrajes trop. 7:375-380. https://doi.org/10.17138/tgft(7)375-380
Russell, J. B., R. E. Muck, & P. J. Weimer. 2009. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS. Microbiol. Ecol. 67: 183-197. https://doi.org/10.1111/j.1574-6941.2008.00633.x
SAS. 2013. Statistical Analysis System, User’s Guide: Statistic. Version 9. 4th Ed. SAS Inst. Inc., Cary, NC.
Satter, L. D. & L. L. Slyter. 1974. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 32:199-208. https://doi.org/10.1079/bjn19740073
Tavendale, M. H., L. P. Meagher, D. Pacheco, N. Walker, G. T. Attwood, & S. Sivakumaran. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 123:403-419. https://doi.org/10.1016/j.anifeedsci.2005.04.037
Teferedegne, B. 2000. New perspectives on the use of tropical plants to improve ruminant nutrition. Proc. Nutr. Soc. 59:209-214. https://doi.org/10.1017/s0029665100000239.
Turner, K. E., S, Wildeus, & J. R. Collins. 2005. Intake, performance, and blood parameters in young goats offered high forage diets of lespedeza or alfalfa hay. Small Rumin. Res. 59:15-23. https://doi.org/10.1016/j.smallrumres.2004.11.007
Van Keulen, J. Y. B. A. & B. A. Young. 1977. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 44:282-287. https://doi.org/10.2527/jas1977.442282x
Van Soest, P. V., J. B. Robertson, & B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Viennasay, B. & M. Wanapat. 2020. Enhancing lactating dairy cow rumen fermentation and production with Flemingia silage containing phytonutrients. Livest. Sci. 241:104201. https://doi.org/10.1016/j.livsci.2020.104201
Wanapat, M. & O. Pimpa. 1999. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Australas. J. Anim. Sci. 12:904-907. https://doi.org/10.5713/ajas.1999.904
Wanapat, M., T. Puramongkon, & W. Siphuak. 2000. Feeding of cassava hay for lactating dairy cows. Asian-Australas. J. Anim. Sci. 13:478-82. https://doi.org/10.5713/ajas.2000.478
Wanapat, M. 2009. Potential uses of local feed resources for ruminants. Trop. Anim. Health Prod. 41:1035-1049. https://doi.org/10.1007/s11250-008-9270-y
Wanapat, M., P. Kongmun, O. Poungchompu, A. Cherdthong, P. Khejornsart, R. Pilajun, & S. Kaenpakdee. 2012. Effects of plants containing secondary compounds and plant oils on rumen fermentation and ecology. Trop. Anim. Health Prod. 44:399-405. https://doi.org/10.1007/s11250-011-9949-3
Wanapat, M., S. Kang, & S. Polyorach. 2013. Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics. J. Anim. Sci. Biotechnol. 4:32. https://doi.org/10.1186/2049-1891-4-32
Wang, J. K., J. A. Ye, & J. X. Liu. 2012. Effects of tea saponins on rumen microbiota, rumen fermentation, methane production and growth performance-a review. Trop. Anim. Health Prod. 44:697-706.
Wang, S., M. Terranova, M. Kreuzer, S. Marquardt, L. Eggerschwiler, & A. Schwarm. 2018. Supplementation of pelleted hazel (Corylus avellana) leaves decreases methane and urinary nitrogen emissions by sheep at unchanged forage intake. Sci. Rep. 8:1-10. https://doi.org/10.1038/s41598-018-23572-3
Weiss, W. P., N. R. St-Pierre, & L. B. Willett. 2009. Varying type of forage, concentration of metabolizable protein, and source of carbohydrate affects nutrient digestibility and production by dairy cows. J. Dairy Sci. 92:5595-5606. https://doi.org/10.3168/jds.2009-2247
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.