Morphometrics Characterization of Thin-Tail Sheep in Lowland and Highland Areas
Abstract
Breed characterization in the livestock is important for the breeding program in the future. This research aimed to characterize Thin-tail sheep in the highland and lowland areas of Jambi Province based on 7 body measurements and body indices using multivariate analysis. Data were collected from 160 sheep consisted of 80 rams and 80 ewes from each area (320 sheep in total with 1-2 years old). The research showed that the principal component analysis (PCA) in this study was explained 65.84%-72.30% by body measurements and 78.23%-84.99% by body indices of the total phenotypic variance of animals. The body measurement of cannon circumference (CC) and body indices of area index (AI), relative cannon index (RCI), dactyl thorax index (DTI), conformation index (CI), and index of body weight (IBW) were selected as the discriminating variable for Thin-tail sheep in different areas. However, this study’s canonical correlation (rc) values were 0.44 for body measurements and 0.47 for body indices. Therefore, about 67.5% of Thin-tail sheep from the lowland area and 57.5% of Thin-tail sheep from the highland area can be characterized with body measurements. Hence, about 61.2% of Thin-tail sheep from the lowland area and 65.6% of Thin-tail sheep from the highland area can be characterized with body indices. Temperature, humidity, rainfall, and length of radiation in the highland areas are lower than in the lowland areas. The cluster analysis in four Thin-tail sheep populations revealed two clusters, i.e., cluster 1 consisted of Kerinci and Sungai Penuh and cluster 2 consisted of Muaro Jambi and Batanghari. It was concluded that about 60% of Thin-tail sheep could be characterized through their body indices.
References
Argüello-Rangel, J., L. Mahecha-Ledesma, & J. Angulo-Arizala. 2020. Nutritional and productive profile of shrub species in tropical lowlands of Antioquia (Colombia). Ciencia y Tecnología Agropecuaria 21:e1700. https://doi.org/10.21930/rcta.vol21_num3_art:1700
Asamoah-Boaheng, M. & E. K. Sam. 2016. Morphological characterization of breeds of sheep: a discriminant analysis approach. Springer Plus 5: 1-12. https://doi.org/10.1186/s40064-016-1669-8
Ashari, M., R. R. A. Suhardiani, & R. Andriati. 2015. Performance of the body weight and the linear body size of the certain age of fat-tailed sheep in east Lombok sub-districts. Jurnal Ilmu dan Teknologi Peternakan Indonesia 1: 24-30.
Ashifudin, M., E. Kurnianto, & Sutopo. 2017. Morphometrical characteristics of red comb and black comb Kedu chicken of first generation in satker ayam Maron-Temanggung. Jurnal Ilmu Ternak. 17: 40-46. https://doi.org/10.24198/jit.v17i1.14825
Aziz M. M. A. & F. S. Al-Hur. 2013. Differentiation between three Saudi sheeps types using size-free canonical discriminant analysis. Emir. J. Food Agric. 25:723-735. https://doi.org/10.9755/ejfa.v25i9.15827
Barbosa, E. R. M., K. W. Tomlinson, L. G. Carvalheiro, K. Kirkman, S. de Bie, H. H. T. Prins, & F. van Langevelde. 2014. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of savanna tree sSpecies. PLoS ONE 9: e92619. https://doi.org/10.1371/journal.pone.0092619
Birhanie, M., K. Alemayehu, & G. Mekuriaw. 2019. Morphological characterization of goat populations in Central Zone of Tigray, Ethiopia. Trop. Ani. Sci. J. 42:81-89. https://doi.org/10.5398/tasj.2019.42.2.81
Birteeb, P. T., O. P. Sunday, A. Yakubu, M. A. Adeleke, & M. O. Ozoje. 2013. Multivariate characterisation of the phenotyphic traits of Djallonke and Sahel sheep in Northern Ghana. Trop. Anim. Health. Prod. 45: 267-274. https://doi.org/10.1007/s11250-012-0211-4
Birteeb, P. T., O. P Sunday, & O. O. Michael. 2014. Analysis of the body structure of Djallonke sheep using multideterminant approach. Anim. Genet. Res. 54: 65-72. https://doi.org/10.1017/S2078633614000125
Boujenane, I. 2015. Multivariate characterisation of Oulmes-Zaer and Tidili cattle using the morphological traits. Iranian J. Appl. Anim. Sci. 5: 293-299.
Boujenane, I., L. Derqaoui, & G. Nouamane. 2016. Morphological differentiation between two Maroccan sheeps breeds. J. Livest. Sci. Tech. 4: 31-38.
Ceccobelli, S., P.D. Lorenzo, F. Panella, E. Lasagna, & F.M. Sarti. 2016. Morphological and genetic characterisation of Pagliarola breed and its genetic relationships with other three indigenous Italian sheep breeds. Ital. J. Anim. Sci. 15: 47-54. https://doi.org/10.1080/1828051X.2016.1139325
[Central Bureau of Statistic, Jambi Province]. 2021. Jambi Province in Numbers. Central Bureau of Statistic, Jambi Province. CV. Dharmaputra, Jambi.
Cerqueira, J. O. L., X. Feas, A. Iglesias, L. F. Pacheco, & J. P. P. Araujo. 2011. Morphological traits in Portuguese Bordaleira de Entre Douro e Minho sheep: divergence of the breed. Anim. Prod. Sci. 51: 635-641. https://doi.org/10.1071/AN10147
Chacon, E., F. Macedo, F. Velazquez, S. R. Paiva, E. Pineda, & C. McManus. 2011. Morphological measurements and body indices for Cuban Creole sheeps and heir crossbreds. Rev. Bras. Zootec. 40: 1671-1679. https://doi.org/10.1590/S1516-35982011000800007
Dauda, A., H. Y. Abbaya, & V. N. Ebegbulem. 2018. Application of multifactorial discriminant analysis of morphostructural differentiation of sheep. J. Genet. Gen. Eng. 2 (2):11-16.
de Andrade, C. W. L., S. M. G. L. Montenegro, J. H. de Miranda, A. A. de A. Montenegro, & F. M. C. V. de Assis. 2018. Simulation of sodium and potassium dynamics by the hydrus 2d model in a Haplic Planosol via residue water. Engenharia Agrícola, Jaboticabal, 38:874-884. https://doi.org/10.1590/1809-4430-Eng.Agric.v38n6p874-884/2018
Dekhili, M. 2014. A morphometric study of sheep reared in North-East Algerian. Arch. Zootec. 63: 623-631. https://doi.org/10.4321/S0004-05922014000400006
Elsaid, R. & A. Elnahas. 2019. Principal component analysis of body measurements of Sohagi sheep in Upper Egypt. Egypt. J. Sheep. Sheeps. Sci. 14: 83-92.
Esquivelzeta, C., M. Fina, R. Bach, C. Madruga, G. Caja, J. Casellas, & J. Piedrafita. 2011. Morphological analysis and subpopulation characterization of Ripollesa sheep breed. Anim. Genet. Res. 49: 9-17. https://doi.org/10.1017/S2078633611000063
[FAO] Food and Agriculture Organization. 2012. Phenotypic Characterization of Animal Genetic Resources. FAO Animal Production and Health Guidelines No. 11. Commission on Genetic Resources for Food and Agriculture. Rome, Italy.
Gatew, H., H. Hassen, K. Kebede, A. Haile, R.N.B. Lobo, A. Yetayew, & B. Rischkowsky. 2015. Husbandry practices and phenotypic characteristics of indigenous goat populations in Ethiopia. African Journal of Agricultural Research 12: 2729-2741. https://doi.org/10.5897/AJAR2016.11282
Getahun, S., S Ahmed, & W. Zemene. 2020. Morphometric characterization of indigenous Goats in East Gojjam Zone, Amhara Region, Ethiopia. Int. J. Adv. Res. Biol. Sci. 7: 47-62.
Geng, R. Q., H. Chang, Z. P. Yang, W. Sun, L. P. Wang, S. X. Lu, K. Tsunoda & Z. J. Ren. 2003. Study on origin and phylogeny status Hu sheep. Asian-Aust. J. Anim. Sci. 16: 743-747. https://doi.org/10.5713/ajas.2003.743
Gunawan, A., R. Mulyono, & C. Sumantri. 2011. Identification of body size and body shape of Garut sheep fighting type and meat type and Garut cross based on principal component analysis. Animal Production 11: 8-14.
Handiwirawan, E., R. R. Noor, C. Sumantri & Subandriyo. 2011. The differentiation of sheep breed based on the body measurements. J. Indonesian Trop. Anim. Agric. 36: 1-8. https://doi.org/10.14710/jitaa.36.1.1-8
Hilmawan F., H. Nuraini, R. Priyanto, & B. W. W. Putra. 2017. Morphometric measurement of male Ongole crossbred cattle and Buffalo by digital image analysis. Jurnal Veteriner 15: 587-596. https://doi.org/10.19087/jveteriner.2016.17.4.587
Hosseini, M., H. M. Shahrbabak, M. B. Zandi, & M. H. Fallahi. 2016. A Morphometric survey among three Iranian horse breeds with multivariate analysis. Med. Pet. 39:155-160. https://doi.org/10.5398/medpet.2016.39.3.155
Indriani, N. P., A. Rochana, H. K. Mustafa, B. Ayuningsih, I. Hernaman, D. Rahmat, T. Dhalika, K. A. Kamil, & Mansyur. 2020. The Effect of various altitudes on field grass forage fiber fraction content. Jurnal Sain Peternakan Indonesia 15: 212-218. https://doi.org/10.31186/jspi.id.15.2.212-218
Jakaria, M. S. A. Zein, S. Sulandari, Subandriyo, & Muladno. 2012. The use of microsatellite markers to study genetic diversity in Indonesian sheep. J. Indonesian Trop. Anim. Agric. 37: 1-9. https://doi.org/10.14710/jitaa.37.1.1-9
Jarquin, J. C. S., S.I.R. Ponce, M.D. Aguilar, H. R. V. Avila, V. H. C. Sandoval, & H. M. A. Montemayor. 2019. Morphostructural characterization of the Black Creole sheeps raised in Central Mexico, a currently threatened zoogenetic resource. Animals 9: 1-12. https://doi.org/10.3390/ani9070459
Josiane M., H. Gilbert, & D. Johann. 2020. Genetic parameters for growth and kid survival of indigenous Goat under smallholding system of Burundi. Animals 10: 1-10. https://doi.org/10.3390/ani10010135
[KEMENTAN RI] Ministry of Agriculture Indonesia. 2017. Livestock and Animal Health Statistics 2017. Directorate General of Animal Livestock and Health. Jakarta, Indonesia.
Khargharia, G., G. Kadirvel, & S. Kumar. 2015. Principal component analysis of morphological traits of Assam hill sheeps in Eastern Himalayan India. J. Anim. Plant. Sci. 25: 1251-1258.
Lee, M. A. 2018. A global comparison of the nutritive values of forage plants grown in contrasting environments. Journal of Plant Research 131:641–654. https://doi.org/10.1007/s10265-018-1024-y
Lee, A. M., A. P. Davis, M. G. G. Chagunda, & P. Manning. 2017. Forage quality declines with rising temperatures, with implications for livestock production and methane emissions. Biogeosciences 14: 1403–1417. https://doi.org/10.5194/bg-14-1403-2017
Mahmudi, R. Priyanto, & Jakaria. 2019. Morphometric characteristics of Aceh, Ongole crossbreed and Bali cattle based on PCA. Journal of Animal Production and Processing Technology 07: 35-40. https://doi.org/10.29244/7.1.35-40
Malewa, A. D. & Salmin. 2008. The characteristics of Palu local sheep based on morphometric diversity. J. Agroland. 15: 68-74.
Mariotti, M., A. Valentini, A., P. A. Marsan & L. Pariset. 2013. Mitochondrial DNA of seven Italian sheep breeds shows faint signatures of domestication and suggests recent breed formation. Mitochondrial DNA 24: 577-583. https://doi.org/10.3109/19401736.2013.770493
Markovic, B., P. Dove, M. Markovic, D. Radonjic, M. Adakalic, & M. Simcic. 2019. Differentiation of some Pramenka sheep breeds based on morphometric characteristics. Archives Anim. Breed. 62: 393-402. https://doi.org/10.5194/aab-62-393-2019
Mavule, B. S., V. Muchenje, C. C. Bezuidenhout, N. W. Kunene. 2013. Morphological structure of Zulu sheep based on principal componentanalysis of body measurements. Small Rum. Res. 111: 23-30. https://doi.org/10.1016/j.smallrumres.2012.09.008
Mulyono, R. H., C. Sumantri, R. R. Noor, Jakaria, & D. A. Astuti. 2018. The prediction of prolificacy using linear body parameters and craniometric analysis in Etawah-Grade does. Trop. Anim. Sci. Journal. 41:77-84. https://doi.org/10.5398/tasj.2018.41.2.77
Nafti, M., Z. Khaldi, & B. Haddad. 2014. Multivariate characterization of morphological traits in local Tunisian oases sheepss. Anim. Genet. Res. 55 :29-38. https://doi.org/10.1017/S2078633614000265
Najmuddin, M. & M. Nasich. 2019. Thin tailed ewe productivity in Sedan Village, Sedan District, Rembang Sub-districts. Journal of Tropical Animal Production 20: 76-83. https://doi.org/10.21776/ub.jtapro.2019.020.01.10
N’Goran, K. E., K. G. Severin, K. N. Cyrille, L. N. Etienne, & E. J. Yves. 2019. Primary morphological characterization of West African dwarf (Djallonke) ewes from Cote d’Ivoire based on qualitative and quantitative traits. Int. J. Genet. Mol. Biol. 11: 16-28. https://doi.org/10.5897/IJGMB2019.0170
Nunes, S. F., J. Ferreira, R.M.F. Silveira, D.C. Sales, J.E.R. de Sousa, S.R. Paiva, & D.A.E. Facanha. 2020. Morphometric characterization and zoometric indices of white Morada Nova breed: The first step for conservation. Small Rum. Res. 192: 106178. https://doi.org/10.1016/j.smallrumres.2020.106178
Nelson, C. J., & L. E. Moser. 1994. Plant Factors Affecting Forage Quality. In: G.C.J. Fahey, L.E. Moser, D.R. Martens, & M. Collins. (Eds.) Forage Quality, Evaluation, and Utilization, American Society of Agronomy Crop Science Society of America Soil Science Society of America, Madison. Pp.115-154. https://doi.org/10.2134/1994.foragequality.c3
Oliveira, E. J., R. P. Savegnano, L. A. de Freitas, A. P. Freitas, S. R. Maia, F. F. Simili, L. E. Faro, R. L. D. da Costa, M. L. S. Junior, & C. C. P. de Paz. 2018. Estimates of genetic parameters and cluster analysis for worm resistance and resilience in Santa Ines meat sheep. Pesq. Agropec. Braz. 53: 1338-1345. https://doi.org/10.1590/s0100-204x2018001200006
Ouchene-Khelifi, N. A., N. Ouchene, A. D. Silva, & M. Lafri. 2018. Multivariate characterization of phenotypic traits of Arabia, the main Algerian sheeps breed. Livest. Res. Rur. Dev. 30: 116.
Petrovic, M. P., D. R. Muslic, V. C. Petrovic, & N. Maksimovic. 2011. Influence of environmental factors on birth weight variability of indigenous Serbian breeds of sheep. Afr. J. Biotechnol. 10: 4673-4676.
Popoola, M. A. & S. O. Oseni. 2018. Multifactorial discriminant analysis of cephalic morphology of indigenous breeds of sheep in Nigeria. Slovak J. Anim. Sci. 51: 4551.
Purwanti, D., E. T. Setiatin, & E. Kurnianto. 2019. The morphometric performance of Ettawa Grade goat in various parity in Center for Integrated Livestock Breeding and Management in Kendal Sub-districts. Jurnal Ilmu-Ilmu Peternakan 29: 15-23. https://doi.org/10.21776/ub.jiip.2019.029.01.03
Putra, W. P. B. & F. Ilham. 2019. Principal component analysis of body measurements and body indices and their correlation with body weight in Katjang does of Indonesia. J. Dairy. Vet. Anim. Res. 8: 124-134. https://doi.org/10.15406/jdvar.2019.08.00254
Putra, W. P. B., S. Said, & J. Arifin. 2020. Principal component analysis (PCA) of body measurements and body indices in the Pasundan cows. BSJ Agri. 3: 49-55.
Rashamol, V.P., V. Sejian, M. Bagath, G. Krishnan, P. R. Archana, & R. Bhatta. 2018. Physiological adaptability of livestock to heat stress: an updated review. J. Anim. Behav. Biometeorol. 6: 62-71. https://doi.org/10.31893/2318-1265jabb.v6n3p62-71
Rochana, A., N. P. Indriani, B. Ayuningsih, I. Hernaman, T. Dhalika, D. Rahmat, & S. Suryanah. 2016. Feed forage and nutrition value at altitudes during the dry season in West Java. Animal Production 18: 85-93. http://dx.doi.org/10.20884/1.anprod.2016.18.2.531
Rustiyana, E., Liman, & F. Fathul. 2016. Effect of substitution of elephant grass (Pennisetum purpureum) with palm leave sheat on the digestibility of crude protein and crude fiber digestibility in goats). Jurnal Ilmiah Peternakan Terpadu. 4: 161-165.
Sabbioni, A., V. Beretti, P. Superchi, & M. Ablondi. 2020. Body weight estimation from body measures in Cornigliese sheep breed. Ital. J. Anim. Sci. 19: 25-30. https://doi.org/10.1080/1828051X.2019.1689189
Salvagno, L. & U. Albarella. 2017. A morphometric system to distinguish sheep and goat postcranial bones. Plos One. 12: 1-37. https://doi.org/10.1371/journal.pone.0178543
Sanni, M.T., M. Okpeku, G. O. Onasanya, M. A. Adeleke, M. Wheto, A S. Adenaike, B. O. Oluwatosin, O. A. Adebambo, & C. O. N. Ikeobi. 2018. Genetic morphometry in nigerian and south african kalahari red goat breeds. Agricultura Tropica Et Subtropica 51:51-61. https://doi.org/10.2478/ats-2018-0006
Sankhyan, V., Y. P. Thakur, S. Katoch, P. K. Dogra, & R. Thakur. 2018. Morphological structuring using principal component analysis of Rampur-Bushair sheep under transhumance production in western Himalayan region,India. Indian J. Anim. Res. 52:917-922. https://doi.org/10.18805/ijar.B-3296
Saputra, D.A., Maskur, & T. Rozi. 2019. Morphometric characteristics (linear size and body circle) of Bali cattle that are raised semi-intensively in Sumbawa Sub-districts. Indonesian Journal of Animal Science and Technology 5: 67-75. https://doi.org/10.29303/jitpi.v5i1.53
Schneider, J. R , B. O. Caron, E. F. Elli, F. Schwarze, & T. D. Engroff. 2019. Solar radiation use efficiency and gross protein of sorghum forage are modified by the cutting management. Ciência Animal Brasileira 20:1-13. https://doi.org/10.1590/1809-6891v20e-46662
Setiyaningrum, E., I N. Kaca, & N. K. E. Suwitari. 2018. The effect of cutting age on production and nutritional quality of indigofera plants (Indigofera Sp). Gema Agro. 23:59-62. https://doi.org/10.22225/ga.23.1.660.59-62
Silva, M. S., L. Shiotsuki, R. N. B. Lobo, & O. Faco. 2015. Principal component analysis of for evaluating a ranking method used in the performance testing in sheep of Morada Nova breed. Cienc. Agr. 36:3909-3922. https://doi.org/10.5433/1679-0359.2015v36n6p3909
Traore, A., H. H. Tamboura, A. Kabore, L. J. Royo, I. Fernandez , I. Alvarez, M. Sangare, D. Bouchel, J. P. Poivey, D. Francois, L. Sawadogo, & F. Goyache. 2008. Multivariate analyses on morphological traits of sheepss in Burkina Faso. Arch. Tierz. 6:588-600. https://doi.org/10.5194/aab-51-588-2008
Turral, H., J. Burke, & J.M. Faures. 2011. Climate change, water and food security. FAO. Water Respons. Rome. 27.
Vazic, B., B. Rogic, I. Pihler, M. Drinić, & N. Savić. 2017. Morphometric characterization and body measurement correlation in dubska pramenka sheep. Contemporary Agriculture. 66:38-43. https://doi.org/10.1515/contagri-2017-0007
Yakubu A. 2013. Pincipal component analysis of the conformation traits of Yankasa sheep. Biotechnol. Anim. Husb. 29:65-74. https://doi.org/10.2298/BAH1301065Y
Yakubu, A. & M. O. Akinyemi. 2010. An evaluation of sexual size dimorphism in Uda sheep using multifactorial discriminant analysis. Acta Agric. Scand Sect. 60:74-78. https://doi.org/10.1080/09064702.2010.502242
Yunusa, A. J., A. E. Salako, & O. A. Oladejo. 2013. Principal component analysis of he morphostructure of Uda and Balami sheep of Nigeria. Int. Res. J. Agric. Sci. 1:45-51.
Zaitoun, I. S., M. J. Tabbaa, & S. Bdour. 2005. Differentiation of native sheeps breeds of Jordan on the basis of morphostructural characteristics. Small Rum Res. 56:173-182. https://doi.org/10.1016/j.smallrumres.2004.06.011
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.