Feed Intake, Nutrient Digestibility, Antioxidant Activity in Plasma, and Growth Performance of Male Dairy Cattle Fed Black Rice and Purple Corn Extracted Residue
Abstract
The study aimed to evaluate the impact of black rice and purple corn extracted residue (BPER) on feed intake, nutrient digestibility, growth performance, and antioxidant activity in male dairy cattle. The residue after extraction of anthocyanin from black rice and purple corn contains anthocyanin and phenolic acids. Several researchers found that anthocyanins and phenolic acids had antioxidant and antimicrobial functions in animals. Sixteen male dairy cattle (with average body weight of 160 ± 10.6 kg) were allotted in a completely randomized design (CRD) with 4 levels of black rice and purple corn extracted residue (BPER) at 0%, 2%, 4%, and 6% dry matter (DM) in total mixed ration (TMR). The TMR diets were fed ad libitum for 125 days. The daily DM intake, nutrient digestibility, growth performance, and plasma metabolites were measured. The results showed that BPER up to 6% had no effect on intakes of DM, organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF). Intake of ether extract (EE) increased with higher levels of BPER (p<0.05). The DM, OM, CP, NDF, and ADF digestibility were similar among treatments. The average daily gain (ADG) and feed per gain were similar among treatments. There was no effect of BPER on the concentrations of glucose, urea, total cholesterol, aspartate aminotransferase (AST), alanine aminotransferase (ALT), protein carbonyl, and antioxidant activity in the plasma. However, the malondialdehyde (MDA) concentrations in the plasma decreased (p<0.05) with the increased level of BPER, indicating that lower lipid oxidation compared to 0% BPER. It was concluded that BPER can be used up to 6% to reduce oxidative stress, without any negative effect on feed intake and nutrient digestibility.
References
Ainsworth, E. A. & K. M. Gillespie. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2:875-877. https://doi.org/10.1038/nprot.2007.102
Akbarian, A., J. Michiels, J. Degroote, M. Majdeddin, A. Golian, & S. De Smet. 2016. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 7:37. https://doi.org/10.1186/s40104-016-0097-5
AOAC. 1995. Official methods of analysis 16th Ed. Assoc. Off. Anal. Chem., Washington DC, USA.
Bendokas, V., V. Stanys, I. Mažeikienė, S. Trumbeckaite, R. Baniene, & J. Liobikas. 2020. Anthocyanins: From the Field to the Antioxidants in the Body. Antioxidants. 9:819. https://doi.org/10.3390/antiox9090819
Butt, M. A., J. A. Bhatti, A. Khalique, & M. Q. Shahid. 2019. Effect of fat supplementation on physiological and reproductive performance of Holstein Friesian bulls during summer. Trop. Anim. Health Prod. 51:2595-2601. https://doi.org/10.1007/s11250-019-01976-1
Cömert, E. D., B. A. Mogol, & V. Gökmen. 2020. Relationship between color and antioxidant capacity of fruits and vegetables. Curr. Res. Food Sci. 2:1-10. https://doi.org/10.1016/j.crfs.2019.11.001
de Souza, J., F. Batistel, K. C. Welter, M. M. Silva, D. F. Costa, & F. A. Portela Santos. 2015. Evaluation of external markers to estimate fecal excretion, intake, and digestibility in dairy cows. Trop. Anim. Health Prod. 47:265-268. https://doi.org/10.1007/s11250-014-0674-6
Fang, Y.-Z., S. Yang, & G. Wu. 2002. Free radicals, antioxidants, and nutrition. Nutrition. 18:872-879. https://doi.org/10.1016/S0899-9007(02)00916-4
Fei, P., F. Zeng, S. Zheng, Q. Chen, Y. Hu, & J. Cai. 2021. Acylation of blueberry anthocyanins with maleic acid: Improvement of the stability and its application potential in intelligent color indicator packing materials. Dye. Pigment. 184:108852. https://doi.org/10.1016/j.dyepig.2020.108852
Fenton, T. W. & M. Fenton. 1979. An improved procedure for the determination of chromic oxide in feed and feces. Can. J. Anim. Sci. 59:631-634. https://doi.org/10.4141/cjas79-081
Gerber, P. J., A. Uwizeye, R. P. O. Schulte, C. I. Opio, & I. J. M. de Boer. 2014. Nutrient use efficiency: A valuable approach to benchmark the sustainability of nutrient use in global livestock production. Curr. Opin. Environ. Sustain. 9:122-130. https://doi.org/10.1016/j.cosust.2014.09.007
Hassan, A. A., A. Z. M. Salem, A. E. Kholif, M. Samir, M. H. Yacout, S. H. A. Hafsa, G. D. Mendoza, M. M. Y. Elghandour, M. Ayala, & S. Lopez. 2016. Performance of crossbred dairy Friesian calves fed two levels of Saccharomyces cerevisiae: intake, digestion, ruminal fermentation, blood parameters and faecal pathogenic bacteria. J. Agric. Sci. 154:1488-1498. https://doi.org/10.1017/S0021859616000599
Hatao, H., S. Oh-Ishi, M. Itoh, C. Leeuwenburgh, H. Ohno, T. Ookawara, K. Kishi, H. Yagyu, H. Nakamura, & T. Matsuoka. 2006. Effects of acute exercise on lung antioxidant enzymes in young and old rats. Mech. Ageing Dev. 127:384-390. https://doi.org/10.1016/j.mad.2005.12.008
Hosoda, K., B. Eruden, H. Matsuyama, & S. Shioya. 2012a. Effect of anthocyanin-rich corn silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows. Anim. Sci. J. 83:453-459. https://doi.org/10.1111/j.1740-0929.2011.00981.x
Hosoda, K., M. Miyaji, H. Matsuyama, S. Haga, H. Ishizaki, & K. Nonaka. 2012b. Effect of supplementation of purple pigment from anthocyanin-rich corn (Zea mays L.) on blood antioxidant activity and oxidation resistance in sheep. Livest. Sci. 145:266-270. https://doi.org/10.1016/j.livsci.2011.12.001
Ishida, K., Y. Kishi, K. Oishi, H. Hirooka, & H. Kumagai. 2015. Effects of feeding polyphenol-rich winery wastes on digestibility, nitrogen utilization, ruminal fermentation, antioxidant status and oxidative stress in wethers. Anim. Sci. J. 86:260-269. https://doi.org/10.1111/asj.12280
Kapcum, N., J. Uriyapongson, I. Alli, & S. Phimphilai. 2016. Anthocyanins, phenolic compounds and antioxidant activities in colored corn cob and colored rice bran. Int. Food Res. J. 23:2347-2356.
Kirisattayakul, W., J. Wattanathorn, S. Iamsaard, J. Jittiwat, B. Suriharn, & K. Lertrat. 2017. Neuroprotective and memory-enhancing effect of the combined extract of purple waxy corn cob and pandan in ovariectomized rats. Oxid. Med. Cell. Longev. 2017:1-12. https://doi.org/10.1155/2017/5187102
Laokuldilok, T., C. F. Shoemaker, S. Jongkaewwattana, & V. Tulyathan. 2011. Antioxidants and antioxidant activity of several pigmented rice brans. J. Agric. Food Chem. 59:193-199. https://doi.org/10.1021/jf103649q
Lee, J., R. W. Durst, & R. E. Wrolstad. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: c. J. AOAC Int. 88:1269-1278. https://doi.org/10.1093/jaoac/88.5.1269
Levine, R. L., J. A. Williams, E. P. Stadtman, & E. Shacter. 1994. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 233:346-357. https://doi.org/10.1016/S0076-6879(94)33040-9
Maciej, J., C. T. Schäff, E. Kanitz, A. Tuchscherer, R. M. Bruckmaier, S. Wolffram, & H. M. Hammon. 2016. Short communication: Effects of oral flavonoid supplementation on the metabolic and antioxidative status of newborn dairy calves. J. Dairy Sci. 99:805-811. https://doi.org/10.3168/jds.2015-9906
Martinez, S., L. Valek, J. Rešetić, & D. F. Ružić. 2006. Cyclic voltammetry study of plasma antioxidant capacity - Comparison with the DPPH and TAS spectrophotometric methods. J. Electroanal. Chem. 588:68-73. https://doi.org/10.1016/j.jelechem.2005.12.016
Matthaiou, C. M., N. Goutzourelas, D. Stagos, E. Sarafoglou, A. Jamurtas, S. D. Koulocheri, S. A. Haroutounian, A. M. Tsatsakis, & D. Kouretas. 2014. Pomegranate juice consumption increases GSH levels and reduces lipid and protein oxidation in human blood. Food Chem. Toxicol. 73:1-6. https://doi.org/10.1016/j.fct.2014.07.027
Matsuba, T., H. Kubozono, A. Saegusa, K. Obata, K. Gotoh, K. Miki, T. Akiyama, & M. Oba. 2019. Short communication: Effects of feeding purple corn (Zea mays L.) silage on productivity and blood superoxide dismutase concentration in lactating cows. J. Dairy Sci. 102:7179-7182. https://doi.org/10.3168/jds.2019-16353
Modzelewska-Kapituła, M., K. Tkacz, Z. Nogalski, M. Karpińska-Tymoszczyk, A. Draszanowska, R. Pietrzak-Fiećko, C. Purwin, & K. Lipiński. 2018. Addition of herbal extracts to the Holstein-Friesian bulls’ diet changes the quality of beef. Meat Sci. 145:163-170. https://doi.org/10.1016/j.meatsci.2018.06.033
NRC. 2001. Nutrient requirement of dairy cattle, 7th revised edn. National Research Council National Academy Press, Washington, DC. USA.
Nurrofingah, U., S. Sumiati, & Y. Retnani. 2020. Evaluation of sweet potato leaves and cassava leaves inclusions into the diet containing lemuru oil on lipid metabolism in local duck. Trop. Anim. Sci. J. 43:141-150. https://doi.org/10.5398/tasj.2020.43. 2.141
Oliveira, R. A., C. D. Narciso, R. S. Bisinotto, M. C. Perdomo, M. A. Ballou, M. Dreher, & J. E. P. Santos. 2010. Effects of feeding polyphenols from pomegranate extract on health, growth, nutrient digestion, and immunocompetence of calves. J. Dairy Sci. 93:4280-4291. https://doi.org/10.3168/jds.2010-3314
Palungwachira, P., S. Tancharoen, P. Dararat, & T. Nararatwanchai. 2020. Anthocyanins isolated from Oryza sativa L. protect dermal fibroblasts from hydrogen peroxide-induced cell death. J. Nat. Sci. Biol. Med. 11:45. https://doi.org/10.4103/jnsbm.JNSBM_171_19
Park, S. Y., J. W. Lee, G. W. Kim, & H. Y. Kim. 2017. Effect of black rice powder on the quality properties of pork patties. Korean J. Food Sci. Anim. Resour. 37:71-78. https://doi.org/10.5851/kosfa.2017.37.1.71
Patsoukis, N., G. Zervoudakis, N. T. Panagopoulos, C. D. Georgiou, F. Angelatou, & N. A. Matsokis. 2004. Thiol redox state (TRS) and oxidative stress in the mouse hippocampus after pentylenetetrazol-induced epileptic seizure. Neurosci. Lett. 357:83-86. https://doi.org/10.1016/j.neulet.2003.10.080
Pereira, D. H., O. G. Pereira, B. C. Silva, M. I. Leão, S. C. Valadares Filho, & R. Garcia. 2008. Nutrient intake and digestibility and ruminal parameters in beef cattle fed diets containing Brachiaria brizantha silage and concentrate at different ratios. Anim. Feed Sci. Technol. 140:52-66. https://doi.org/10.1016/j.anifeedsci.2007.02.012
Prommachart, R., T. S. Belem, S. Uriyapongson, P. Rayas-Duarte, J. Uriyapongson, & R. Ramanathan. 2020. The effect of black rice water extract on surface color, lipid oxidation, microbial growth, and antioxidant activity of beef patties during chilled storage. Meat Sci. 164: 108091. https://doi.org/10.1016/j.meatsci.2020.108091
Purba, N. S., S. Uriyapongson, & J. Uriyapongson. 2020. Effect of purple corn cob extract powder and black rice bran oil on quality and shelf life of fresh beef. Songklanakarin J. Sci. Technol. 42:645-651. https://doi:10.14456/SJST-PSU.2020.82.
Ramos-Escudero, F., A. M. Muñoz, C. Alvarado-Ortíz, Á. Alvarado, & J. A. Yáñez. 2012. Purple corn ( Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. J. Med. Food. 15:206-215. https://doi.org/10.1089/jmf.2010.0342
Ribeiro, J. S., M. J. M. C. Santos, L. K. R. Silva, L. C. L. Pereira, I. A. Santos, S. C. da Silva Lannes, & M. V. da Silva. 2019. Natural antioxidants used in meat products: A brief review. Meat Sci. 148:181-188. https://doi.org/10.1016/j.meatsci.2018.10.016
Safari, M., E. Ghasemi, M. Alikhani, & S. Ansari-Mahyari. 2018. Supplementation effects of pomegranate by-products on oxidative status, metabolic profile, and performance in transition dairy cows. J. Dairy Sci. 101:11297-11309. https://doi.org/10.3168/jds.2018-14506
Sangkitikomol, W., T. Tencomnao, & A. Rocejanasaroj. 2010. Effects of Thai black sticky rice extract on oxidative stress and lipid metabolism gene expression in HepG2 cells. Genet. Mol. Res. 9:2086-2095. https://doi.org/10.4238/vol9-4gmr912
SAS. 1998. User’s Guide: Statistic, Version 6, 12th Ed. SAS Inst. Inc. Cary, NC.
Šturm, L. & N. Poklar Ulrih. 2020. Propolis flavonoids and terpenes, and their interactions with model lipid membranes: A review. Adv. Biomembr. Lipid Self-Assembly. 32:25-52. https://doi.org/10.1016/bs.abl.2020.04.003
Tan, C., C. A. Ramírez-Restrepo, A. M. Shah, R. Hu, M. Bell, Z. Wang, & C. McSweeney. 2020. The community structure and microbial linkage of rumen protozoa and methanogens in response to the addition of tea seed saponins in the diet of beef cattle. J. Anim. Sci. Biotechnol. 11:80. https://doi.org/10.1186/s40104-020-00491-w
Tarahovsky, Y. S., Y. A. Kim, E. A. Yagolnik, & E. N. Muzafarov. 2014. Flavonoid-membrane interactions: Involvement of flavonoid-metal complexes in raft signaling. Biochim. Biophys. Acta - Biomembr. 1838:1235-1246. https://doi.org/10.1016/j.bbamem.2014.01.021
Tian, X., P. Paengkoum, S. Paengkoum, S. Thongpea, & C. Ban. 2018. Comparison of forage yield, silage fermentative quality, anthocyanin stability, antioxidant activity, and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover and sticky corn stover. J. Integr. Agric. 17:2082-2095. https://doi.org/10.1016/S2095-3119(18)61970-7
Tian, X., H. Xin, P. Paengkoum, S. Paengkoum, C. Ban. & S. Thongpea. 2019. Effects of anthocyanin-rich purple corn (Zea mays L.) stover silage on nutrient utilization, rumen fermentation, plasma antioxidant capacity, and mammary gland gene expression in dairy goats. J. Anim. Sci. 97:1384-1397. https://doi.org/10.1093/jas/sky477
Toaldo, I. M., F. A. Cruz, T. de L. Alves, J. S. de Gois, D. L. G. Borges, H. P. Cunha, E. L. da Silva, & M. T. Bordignon-Luiz. 2015. Bioactive potential of Vitis labrusca L. grape juices from the Southern Region of Brazil: Phenolic and elemental composition and effect on lipid peroxidation in healthy subjects. Food Chem. 173:527-535. https://doi.org/10.1016/j.foodchem.2014.09.171
Trikas, E. D., M. Melidou, R. M. Papi, G. A. Zachariadis, & D. A. Kyriakidis. 2016. Extraction, separation and identification of anthocyanins from red wine by-product and their biological activities. J. Funct. Foods. 25:548-558. https://doi.org/10.1016/j.jff.2016.06.033
Van Soest, P. J., J. B. Robertson, & B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Van Soest, P. J. & J. B. Robertson. 1980. Systems of Analysis for Evaluating Fibrous Feeds. In: Pigden, W. J., Balch, C. C., Graham, M. (Eds.), Standardization of Analytical Methodology for Feeds. International Development Research Centre, Ottawa, Canada, p. 49-60.
Villasante, A., M. S. Powell, K. Moutou, G. K. Murdoch, K. Overturf, J. Wacyk, & R. W. Hardy. 2016. Effects of anthocyanidins on myogenic differentiation and antioxidant defense in primary myogenic cells isolated from rainbow trout (Oncorhynchus mykiss). Aquaculture. 454:81-89. https://doi.org/10.1016/j.aquaculture.2015.12.007
Williams, C. H., D. J. David, & O. Iismaa. 1962. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J. Agric. Sci. 59:381-385. https://doi.org/10.1017/S002185960001546X
Yamashita, C., M. M. S. Chung, C. dos Santos, C. R. M. Mayer, I. C. F. Moraes, & I. G. Branco. 2017. Microencapsulation of an anthocyanin-rich blackberry (Rubus spp.) by-product extract by freeze-drying. LWT - Food Sci. Technol. 84:256-262. https://doi.org/10.1016/j.lwt.2017.05.063
Zhao, X., C. Zhang, C. Guigas, Y. Ma, M. Corrales, B. Tauscher, & X. Hu. 2009. Composition, antimicrobial activity, and antiproliferative capacity of anthocyanin extracts of purple corn (Zea mays L.) from China. Eur. Food Res. Technol. 228:759-765. https://doi.org/10.1007/s00217-008-0987-7
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.