Estrous Signs and Progesterone Profile of Ongole Grade Cows Synchronized at Different Ages Fed Different Level of Dietary Crude Protein

R. N. Hayati, Panjono Panjono, A. Irawan

Abstract

This study aimed to evaluate the effects of concentrate supplementation containing different protein levels on estrous signs and progesterone profiles of two age groups of Ongole Grade cow. Thirty females cows were grouped according to their ages (G1= 25±1.6 months; G2= 37±1.7 months), where each group received 3 dietary treatments with 5 replicates. The dietary treatment was based on CP levels of total mixed ration (TMR) (T1= 7.41% CP; T2= 8.23% CP; and T3= 9.17% CP). The cows were synchronized using PGF2α and GnRH, followed by time-fixed artificial insemination (TAI) using frozen semen. Data on nutrient intake and progesterone concentration were subjected to a randomized complete block design of ANOVA following a factorial arrangement of 2×3 while data of estrous signs were analyzed using non-parametric methods of Kruskal-Wallis and independent t-test. The results showed that there was a significant interaction effect between age group and dietary TMR treatment on CP intake and TDN intake in which the highest intakes were found in older cows (G2) fed TMR at 7.41% CP (T1) (p<0.01). Dry matter intake (DMI) was not affected either by age group or level of concentrate supplementation. Results also suggested that estrous signs, including vulva redness, swollen vulva, and mucus discharge, were higher in older cows (G2) than in younger cows (G1). In addition, interactions were also found on progesterone levels, whereas younger cows (G1) fed TMR with 9.17% CP (T3) showed the highest concentration of progesterone on d 5, 17, and 21 (p<0.01). In conclusion, this study suggests that younger cows receiving the highest CP diet (T3) result in higher progesterone concentration during the experimental period. Therefore, it is important to fed sufficient dietary CP especially for cattle in early reproduction period to optimize the reproductive performance.

References

Alves, N. G., C. A. A. Torres, J. D. Guimarães, E. A. Moraes, M. T. Rodrigues, P. R. Cecon, L. L. Bitencourt, & L. D. S. Amorim. 2011. Effect of urea in the diet on ovarian follicular dynamics and plasma progesterone concentration in Alpine goats. R. Bras. Zootec. 40: 1512-1518. https://doi.org/10.1590/S1516-35982011000700016
AOAC. 2005. Official Methods of Analysis of AOAC International. 18th ed. Assoc. Off. Anal. Chem., Arlington.
Astuti, D., B. Suhartanto, N. Umami, & A. Irawan. 2020. Productivity, nutrient composition, and hydrocyanic acid concentration of Super-2 forage sorghum at different NPK levels and planting spaces. Trop. Anim. Sci. J. 42:189-195. https://doi.org/10.5398/tasj.2019.42.3.189
Bishop, B. E., J. M. Thomas, J. M. Abel, S. E. Poock, M. R. Ellersieck, M. F. Smith & D. J. Patterson. 2017. Split-time artificial insemination in beef cattle: III. Comparing fixed-time artificial insemination to split-time artificial insemination with delayed administration of GnRH in postpartum cows. Theriogenology. 99:48-52. https://doi.org/10.1016/j.theriogenology.2017.04.046
Broes, A. & S. J. LeBlanc. 2014. Comparison of commercial progesterone assays for evaluation of luteal status in dairy cows. Can. Vet. J. 55: 582-584.
Chen, S., P. Paengkoun, & X. Xia. 2012. Effect of dietary crude protein and undegradable intake protein on nitrogen utilization and growth performance of groeing Thai-indogenous beef cattle. Trop. Anim. Health Prod. 51:1151-1159. https://doi.org/10.1007/s11250-019-01799-0
Dahlen, C., J. Larson, & G. C. Lamb. 2014. Impacts of reproductive technologies on beef production in the United States. Current and Future Reproductive Technologies and World Food Production. Springer, New York, NY, USA, pp. 97-114. https://doi.org/10.1007/978-1-4614-8887-3_5
Diskin, M. G. & D. A. Kenny. 2016. Managing the reproductive performance of beef cows. Theriogenology. 86:379-387. https://doi.org/10.1016/j.theriogenology.2016.04.052
Dung, D. V., H. Roubík, L. D. Ngoan, L. D. Phung, & N. X. Ba. 2019. Characterization of smallholder beef cattle production system in Central Vietnam -revealing performance, trends, constraints, and future development. Trop. Anim. Sci. J. 42: 253-260. https://doi.org/10.5398/tasj.2019.42.3.253
Frade, M. C., C. Frade, M.B. Cordeiro, M.F. Sá Filho, F.S. de, Mesquita, G. Nogueira, P. de, M. Binelli, & C.M.B. Membrive. 2014. Manifestation of estrous behavior and subsequent progesterone concentration at timed-embryo transfer in cattle are positively associated with pregnancy success of recipients. Anim. Reprod. Sci. 151:85-90. https://doi.org/10.1016/j.anireprosci.2014.09.005
Frandson, R. D, W. L. Wilke, & A. D. Fails. 2003. Anatomy and Physiology of Farm Animal. 7th ed. Lippincott Williams and Wilkins, Philadelphia.
Gading, M. B. W. T., A. Agus, A. Irawan, & P. Panjono. 2020. Growth performance, hematological and mineral profile of post‐weaning calves as influenced by inclusion of pelleted‐concentrate supplement containing essential oils and probiotics. Iran. J. Appl. Anim. Sci. 10:461-468.
Geppert, T. C., A. M. Meyer, G. A. Perry, & P. J. Gunn. 2017. Effects of excess metabolizable protein on ovarian function and circulating amino acids of beef cows: 2. Excessive supply in varying concentrations from corn gluten meal. Animal. 11: 634-642. https://doi.org/10.1017/S1751731116001890
Kasimanickam, R., K. Jorgensen-Muga, J. Beumeler, K. Ratzburg, A. Kapi, V. Kasimanickam & J. Kastelic. 2020. Estrous response and pregnancy percentages following use of a progesterone-based, split-time estrous synchronization treatment regimens in beef heifers. Anim. Reprod. Sci. 221:106544. https://doi.org/10.1016/j.anireprosci.2020.106544
Layek, S. S., T. K. Mohanty, A. Kumaresan, K. Behera, & S. Chand. 2011. Behavioural signs of estrous and their relationship to time of ovulation in Zebu (Sahiwal) cattle. Anim. Reprod. Sci. 129:140-145. https://doi.org/10.1016/j.anireprosci.2011.11.006
Law, R. A., F. J. Young, D. C. Patterson, D. J. Kilpatrick, A. R. G. Willie, & C. S. Mayne. 2009. Effect of dietary protein content on the fertility of dairy cows during early and mid lactation. J. Dairy Sci. 92:2737-2746. https://doi.org/10.3168/jds.2008-1420
Lents, C. A., F. J. White, N. H Ciccioli, R. P Wettemann, L. J. Spicer, & D . L. Lalman. 2015. Effect of body condition score at parturition and postpartum protein supplementation on estrous behavior and size of the dominant follicle in beef cattle. J. Anim. Sci. 86:2549-2556. https://doi.org/10.2527/jas.2008-1114
McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, C. A. Morgan, L. A. Sinclair, & R.G. Wilkinson. 2011. Animal Nutrition, 7th ed. Pearson, Harlow.
Mondal, M., C. Rajkhowa, & B. S. Prakash. 2006. Behavioral estrous signs can predict the time of ovulation in mithun (Bos frontalis). Theriogenology. 66:1391-1396. https://doi.org/10.1016/j.theriogenology.2006.04.033
Moore, S. G., S. Scully, J. A. Browne, T. Fair & S. T. Butler. 2014. Genetic merit for fertility traits in Holstein cows: V. Factors affecting circulating progesterone concentrations. J. Dairy Sci. 97:5543-5557. https://doi.org/10.3168/jds.2014-8133
Moran, C., J.F. Quirke, & J.F. Roche. 2010. Puberty in beef heifers: A review. Anim. Reprod. Sci. 18:167-182. https://doi.org/10.1016/0378-4320(89)90019-5
NRC. 2000. Nutritional Requirements of Beef Cattle. 7th Revised ed. The Natural Academic Press, Washington D.C.
Oosthuizen, N., R. F. Cooke, K. M. Schubach, P. L. P. Fontes, A. P. Brandão, R. V. Oliveira Filho, E. A. Colombo, G. A. Franco, S. Reese, K. G. Pohler, & G. C. Lamb. 2020. Effects of estrous expression and intensity of behavioral estrous symptoms on variables associated with fertility in beef cows treated for fixed-time artificial insemination. Anim. Reprod. Sci. 214:106308. https://doi.org/10.1016/j.anireprosci.2020.106308
Orihuela, Â. 2000. Some factors affecting the behavioural manifestation of oestrus in cattle: a review. Appl. Anim. Behav. Sci. 70:1-16. https://doi.org/10.1016/S0168-1591(00)00139-8
Puzio, N., C. Purwin, Z. Nogalski, I. Białobrzewski, L. Tomczyk, & J. P. Michalski. 2019. The effects of age and gender (bull vs steer) on the feeding behavior of young beef cattle fed grass silage. Asian-Australas. J. Anim. Sci. 232:1211-1218. https://doi.org/10.5713/ajas.18.0698
Ramachandran, R., A. Vinothkumar, D. Sankarganesh, U. Suriyakalaa, V. S. Aathmanathan, S. Kamalakkannan, V. Nithya, J. Angayarkanni, G. Archunan, M. A. Akbarsha, & S. Achiraman. 2020. Detection of estrous biomarkers in the body exudates of Kangayam cattle (Bos indicus) from interplay of hormones and behavioral expressions. Domest. Anim. Endocrin. 72:106392. https://doi.org/10.1016/j.domaniend.2019.106392
Ratnawati, D., D.A. Indrakusuma, L. Affandhy, F. Cowley, D. Mayberry, & D. Poppi. 2017. Strategi manajemen untuk meningkatkan perfomans produksi reproduksi sapi Brahman Cross (Bos indicus) di Jawa Timur, Indonesia. JITV. 21: 231-237. https://doi.org/10.14334/jitv.v21i4.1512
Riaz, M. Q., K. H. Südekum, M. Clauss, & A. Jayanegara. 2014. Voluntary feed intake and digestibility of four domestic ruminant species as influenced by dietary constituents: a meta-analysis. Livest. Sci. 162:76-85. https://doi.org/10.1016/j.livsci.2014.01.009
Robinson, J. J., C. J. Asworth, J. A. Rooke, L. M. Mitchell, & T. G McEvoy. 2006. Nutrition and fertility in livestock. Anim. Feed Sci. Technol. 126: 259-276. https://doi.org/10.1016/j.anifeedsci.2005.08.006
Rodrigues, A. D., R. F. Cooke, R. S. Cipriano, L. G. T. Silva, R. L. A. Cerri, & L. H. Cruppe. 2018. Impacts of estrus expression and intensity during a timed-AI protocol on variables associated with fertility and pregnancy success in Bos indicus-influenced beef cows 1. J. Anim. Sci. 96:236-249. https://doi.org/10.1093/jas/skx043
Rosales-Torres, A. M., Z. B. López-Cedillo, C. G. Hernández-Coronado, J. V. Rosete-Fernández, G. D. Mendoza1, & A. Guzmán. 2016. Short-term dietary concentrate supplementation during estrus synchronization treatment in beef cows increased IGF-I serum concentration but did not affect the reproductive response. Trop. Anim. Health Prod. 49:221–226. https://doi.org/10.1007/s11250-016-1166-7
Schubach, K. M., R. F. Cooke, A. P. Brandão, K. D. Lippolis, L. G. T. Silva, R. S. Marques, & D. W. Bohnert. 2017. Impacts of stocking density on development and puberty attainment of replacement beef heifers. Animal. 12: 2260-2267. https://doi.org/10.1017/S1751731117001070
Shirasuna, K. 2010. Nitric oxide and luteal blood flow in the luteolytic cascade in the cow. J. Reprod. Dev. 56:9-14. https://doi.org/10.1262/jrd.09-206E
Silper, B. F., A. M. L. Madureira, M. Kaur, T. A. Burnett, & R. L. A. Cerri. 2015. Short communication: Comparison of estrus characteristics in Holstein heifers by 2 activity monitoring systems. J. Dairy Sci. 98:3158-3165. https://doi.org/10.3168/jds.2014-9185
Spencer, T. E., N. Forde & P. Lonergan. 2016. The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J. Dairy Sci. 99:5941-5950. https://doi.org/10.3168/jds.2015-10070
Sonjaya, H., L. Rahim, D. K. Sari, A. Abdullah, S. Gustina, & H. Hasbi. 2020. Estrous and pregnancy rate responses of postpartum Bali cattle to concentrate supplementation with different protein levels of rice-straw as basal ration. IOP Conf. Series: Earth and Environmental Science. 492:012075. https://doi.org/10.1088/1755-1315/492/1/012075
Sutiyono, S., D. Samsudewa, & A. Suryawijaya. 2018. Estrus and pregnancy rate of Simmental-O’ngole crossbred and Ongole grade heifer after being synchronized and inseminated. J. Indones. Trop. Anim. Agric. 43:438-444. https://doi.org/10.14710/jitaa.43.4.438-444

Authors

R. N. Hayati
rininur1717@gmail.com (Primary Contact)
Panjono Panjono
A. Irawan
HayatiR. N., PanjonoP., & IrawanA. (2021). Estrous Signs and Progesterone Profile of Ongole Grade Cows Synchronized at Different Ages Fed Different Level of Dietary Crude Protein. Tropical Animal Science Journal, 44(1), 16-23. https://doi.org/10.5398/tasj.2021.44.1.16

Article Details