Detection of Tetracycline Resistance Genes among Escherichia coli Isolated from Layer and Broiler Breeders in West Java, Indonesia

A. Indrawati, K. Khoirani, S. Setiyaningsih, U. Affif, Safika, S. G. Ningrum

Abstract

A major current problem in public health is the issue of antimicrobial resistance of Escherichia coli in humans and poultry. In Indonesia, multidrug-resistant E. coli are of specific concern since such E. coli may cause public health problems in humans. The prevalence of multidrug-resistant chicken E. coli strains and the E. coli resistance genes, which are tet(A) and tet(B) genes, were investigated in the present study. A total of 57 swabs were collected from layer and broiler breeder farms in West Java, Indonesia, and used in the experiment. Eighteen isolates were identified as E. coli by the disk diffusion method. The isolates classified as drug-resistant and intermediate were then identified using PCR for the antimicrobial resistance genes. The results showed that 18 isolates of E. coli from layer-breeder and broiler-breeder farms in West Java were resistant to ampicillin (100%), nalidixic acid (94%), tetracycline (88%), oxytetracycline (83%), gentamicin (27%), and chloramphenicol (22%). PCR identification of E. coli antimicrobial-resistant genes in 18 isolates showed tet(A) and tet(B) genes. This study reports antimicrobial resistance genes among E. coli on layer and broiler breeder farms in West Java. This present study showed that E. coli isolated from layers-breeder and broiler-breeder farms in West Java of Indonesia carried tet(A) and tet(B) genes, the multidrug-resistance genes.

References

Abo-Amer, A. E., M. Y. Shobrak, & A. D. Altalhi. 2018. Isolation and antimicrobial resistance of Escherichia coli isolated from farm chickens in Taif, Saudi Arabia. J Glob. Antimicrob. Resist. 15:65-68. https://doi.org/10.1016/j.jgar.2018.05.020
Alonso, C. A., M. Zarazaga, R. Ben Sallem, A. Jouini, K. Ben Slama, & C. Torres. 2017. Antibiotic resistance in Escherichia coli in husbandry animals: The African perspective. Lett. Appl. Microbiol. 64:318-334. https://doi.org/10.1111/lam.12724
Amer, M. M., H. M. Mekky, A. M. Amer, & H. S. Fedawy. 2018. Antimicrobial resistance genes in pathogenic Escherichia coli isolated from diseased broiler chickens in Egypt and their relationship with the phenotypic resistance characteristics. Vet. World. 11:1082. https://doi.org/10.14202/vetworld.2018.1082-1088
Chen, J. & M. W. Griffiths. 1998. PCR differentiation of Escherichia coli from other Gram‐negative bacteria using primers derived from the nucleotide sequences flanking the gene encoding the universal stress protein. Lett. Appl. Microbiol. 27:369-371. https://doi.org/10.1046/j.1472-765X.1998.00445.x
CLSI (Clinical and Laboratory Standards Institute). 2018. Perfomance Standards for Antimicrobial Susceptibility Testing. 28th ed. CLSI Suplement M100. Clinical and Laboratory Standars Institute, Wayne,United States.
De Kraker, M. E. A., M. Abbas, B. Huttner, & S. Harbarth. 2017. Good epidemiological practice: A narrative review of appropriate scientific methods to evaluate the impact of antimicrobial stewardship interventions. Clin. Microbiol. Infect. 23:819-825. https://doi.org/10.1016/j.cmi.2017.05.019
Godambe, L. P., J. Bandekar, & R. Shashidhar. 2017. Species specific PCR based detection of Escherichia coli from Indian foods. 3 Biotech. 7:1-5. https://doi.org/10.1007/s13205-017-0784-8
Hedayatianfard, K., M. Akhlaghi, & H. Sharifiyazdi. 2014. Detection of tetracycline resistance genes in bacteria isolated from fish farms using polymerase chain reaction. Vet. Res. Forum. 5:269.
Jones, C. H., M. Tuckman, E. Murphy, & P. A. Bradford. 2006. Identification and sequence of a tet (M) tetracycline resistance determinant homologue in clinical isolates of Escherichia coli. J. Bacteriol. 188:7151-7164. https://doi.org/10.1128/JB.00705-06
Juhas, M. 2015. Horizontal gene transfer in human pathogens. Crit. Rev. Microbiol. 41:101-108. https://doi.org/10.3109/1040841X.2013.804031
Liljebjelke, K. A., C. L. Hofacre, D. G. White, S. Ayers, M. D. Lee, & J. J. Maurer. 2017. Diversity of antimicrobial resistance phenotypes in Salmonella isolated from commercial poultry farms. Front. Vet. Sci. 4:96. https://doi.org/10.3389/fvets.2017.00096
Ling, Z., Y, Yang, Y. Huang, S. Zou, & T. Luan. 2013. A preliminary investigation on the occurrence and distribution of antibiotic resistance genes in the Beijiang River, South China. J. Environ. Sci. 25:1656-1661. https://doi.org/10.1016/S1001-0742(12)60223-X
Osińska, A., M. Harnisz, & E. Korzeniewska. 2016. Prevalence of plasmid-mediated multidrug resistance determinants in fluoroquinolone-resistant bacteria isolated from sewage and surface water. Environ. Sci. Pollut. Res. 23:10818-10831. https://doi.org/10.1007/s11356-016-6221-4
Pumipuntu, N. & S. Pumipuntu. 2019. Detection of antimicrobial resistance genes of carbapenem-resistant Enterobacteriaceae in Escherichia coli isolated from the water supply of smallholder dairy farms in Saraburi and Maha Sarakham, Thailand. Int. J. One Health. 6:1-5. https://doi.org/10.14202/IJOH.2020.1-5
Qabajah, M., E. Awwad, & Y. Ashhab. 2014. Molecular characterisation of Escherichia coli from dead broiler chickens with signs of colibacillosis and ready-to-market chicken meat in the West-Bank. Br. Poult. Sci. 55:442-451. https://doi.org/10.1080/00071668.2014.935998
Randall, L. P., S. W. Cooles, M. K. Osborn, L. V. J. Piddock, & M. J. Woodward. 2004. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. Antimicrob. Chemother. 53:208-216. https://doi.org/10.1093/jac/dkh070
Shecho, M., N. Thomas, J. Kemal, & Y. Muktar. 2017. Cloacael carriage and multidrug resistance Escherichia coli O157: H7 from poultry farms, eastern Ethiopia. J. Vet. Med. 2017:8264583. https://doi.org/10.1155/2017/8264583
Veldman, K., L. M. Cavaco, D. Mevius, A. Battisti, A. Franco, N. Botteldoorn, M. Bruneau, A. Perrin-Guyomard, T. Cerny, C. De Frutos Escobar, & B. Guerra. 2011. International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. J. Antimicrob. Chemother. 66:1278-1286. https://doi.org/10.1093/jac/dkr084
Vounba, P., J. Arsenault, R. Bada-Alambedji, & J. M. Fairbrother. 2019. Prevalence of antimicrobial resistance and potential pathogenicity, and possible spread of third generation cephalosporin resistance, in Escherichia coli isolated from healthy chicken farms in the region of Dakar, Senegal. PloS One. 14:e0214304. https://doi.org/10.1371/journal.pone.0214304
Zaman, S. B., M. A. Hussain, R. Nye, V. Mehta, K. T. Mamun, & N. Hossain. 2017. A review on antibiotic resistance: Alarm bells are ringing. Cureus. 9:e1403. https://doi.org/10.7759/cureus.1403
Zhang, X. X., T. Zhang, & H. H. Fang. 2009. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotech. 82:397-414. https://doi.org/10.1007/s00253-008-1829-z
Zhang, H., M. U. Rehman, K. Li, H. Luo, Y. Lan, F. Nabi, M. K. Iqbal. 2017. Antimicrobial resistance of Escherichia coli isolated from Tibetan piglets suffering from white score diarrhea. Pak. Vet. J. 37:43-6.

Authors

A. Indrawati
titin.seta@gmail.com (Primary Contact)
K. Khoirani
S. Setiyaningsih
U. Affif
Safika
S. G. Ningrum
IndrawatiA., KhoiraniK., SetiyaningsihS., AffifU., Safika, & NingrumS. G. (2021). Detection of Tetracycline Resistance Genes among Escherichia coli Isolated from Layer and Broiler Breeders in West Java, Indonesia. Tropical Animal Science Journal, 44(3), 267-272. Retrieved from https://journal.ipb.ac.id/index.php/tasj/article/view/31835

Article Details