Maja Fruit Extracts Inhibit Escherichia coli, Reduce Fly Larvae Population, and Ammonia Emission of Chicken Excreta
Abstract
The characteristic of chicken excreta has a very potential as a breeding media for flies and is known for causing odorous pollutants (NH3 emission) from undigested protein and the activities of urease microorganisms. This study is focused on extracting Maja fruit, to quantify marmelosin from different fruit conditions using HPLC, and to determine the biological activity for handling the chicken excreta problems. In this study, the Kirby-Bauer Test was used to observe the antibacterial activity of marmelosin, the NH3 trapping method was used to determine ammonia emission, and the larvae population was determined by the Fly-Grill method. Marmelosin contents in MFE from immature, mature, and fermented fruit condition were 108.65 μg/g; 65.83 μg/g, and 23.02 μg/g, respectively. The increasing level of marmelosin addition to 50, 100, 150, and 200 μg/mL caused the higher diameter of inhibition zone against E. coli (p<0.05), which were 2.50, 2.90, 5.06, and 7.27 mm, respectively. The increasing level of MFE addition at 5, 7.5, and 10% (v/v) showed a higher inhibition effect on the NH3 emission from the excreta. The addition of MFE up to 10% (v/v) had no significant effect on the total larvae population of flies that existed in the excreta. It can be concluded that the highest marmelosin content was confirmed in the immature fruit condition. The highest antibacterial activity of marmelosin from MFE was shown at the concentration of 200 µg/mL. The application of 10% (v/v) MFE to the excreta gave the highest inhibition of NH3 emission and minimized the average larvae population of flies.
References
Ali, S., M. I. Ullah, M. Arshad, Y. Iftikhar, M. Saqib & M. Afzal. 2017. Effect of botanicals and synthetic insecticides on Pieris brassicae (L., 1758) (Lepidoptera: Pieridae). Turkiye Entomoloji Derg. 41: 275-284. https://doi.org/10.16970/entoted.308941
Baydar, H., H. Schulz, H. Krüger, S. Erbas, & S. Kineci. 2008. Influences of fermentation time, hydro-distillation time and fractions on essential oil composition of Damask Rose (Rosa damascena Mill.). J. Essent. Oil-Bear. Plants. 11: 224-232. https://doi.org/10.1080/0972060X.2008.10643624
Bhattacherjee, A. K., A. Dikshit, D. Pandey, & D. K. Tandon. 2013. High performance liquid chromatographic determination of marmelosin and psoralen in bael (Aegle marmelos (L.) Correa) fruit. J. Food Sci. Technol. 52: 597-600. https://doi.org/10.1007/s13197-013-1015-x
Bosly, A. H. 2013. Evaluation of insecticidal activities of Mentha piperita and Lavandula angustifolia essential oils against house fly, Musca domestica L. (Diptera: Muscidae). J Entomol. Nematol. 5: 50-54. https://doi.org/10.5897/JEN2013.0073
Caroprese, M., M. G. Ciliberti, & M. Albenzio. 2020. Chapter 15 - Application of Aromatic Plants and Their Extracts in Dairy Animals. In: Aromatic Plants and Herbs in Animal Nutrition and Health. Feed Additives, Elsevier Inc. p. 261-277. https://doi.org/10.1016/B978-0-12-814700-9.00015-7
Chinchansure, A. A., N. H. Shamnani, M. Arkile, D. Sarkar, & S. P. Joshi. 2015. Antimycobacterium activity of coumarins from fruit pulp of Aegle marmelos (L.) Correa. Int. J. Basic Appl. Chem. Sci. 5: 39-44.
El-Sherbini, G. T. & N. O. Hanykamel. 2014. Insecticidal effects of Fortunella crassifolia essential oil used against house fly (Musca domestica). Int. J. Curr. Microbiol. App. Sci. 3: 1-9.
Fitriyanto, N. A., A. Winarti, F. A. Imara, Y. Erwanto, T. Hayakawa, & T. Nakagawa. 2017. Identification and growth characters of nitrifying Pseudomonas sp., LS3K isolated from odorous region of poultry farm. J. Biol. Sci. 17: 1-10. https://doi.org/10.3923/jbs.2017.1.10
Flores-Encarnacion, M., R. M. Nava-Nolazco, R. Carreno-Lopez, G. R. Aguilar-Gutierrez, S. C. Garcia-Garcia, & C. Cabrera-Maldonado. 2016. The antibacterial effect of plant-based essential oils. Int. J. Res. Stud. Biosci. 4: 1-6.
Friedrich, A. W., R. Köck, M. Bielaszewska, W. Zhang, H. Karch, & W. Mathys. 2005. Distribution of the urease gene cluster among and urease activities of enterohemorrhagic Escherichia coli O157 isolates from humans. J. Clin. Microbiol. 43: 546-550. https://doi.org/10.1128/JCM.43.2.546-550.2005
Geden, C. J. 2012. Status of biopesticides for control of house flies. J. Biopestic. 5: 1-11.
Hudzicki, J. 2016. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Author Information. In American Society For Microbiology, American Society for Microbiology. p. 1-13.
Jana, B. R., Md. Idris, & M. Singh. 2017. Physico-chemical changes and pest incidence associated with development of bael (Aegle marmelos Correa.) fruit. Adv. Plants Agric. Res. 7: 422-425. https://doi.org/10.15406/apar.2017.07.00277
Konieczna, I., P. Zarnowiec, M. Kwinkowski, B. Kolesinska, J. Fraczyk, Z. Kaminski, & W. Kaca. 2012. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. Sci. 13: 789-806. https://doi.org/10.2174/138920312804871094
Kozioł, E., & K. Skalicka-Woźniak. 2016. Imperatorin-pharmacological meaning and analytical clues: profound investigation. Phytochem. Rev. 15: 627-649. https://doi.org/10.1007/s11101-016-9456-2
Kumar, P., S. Mishra, A. Malik, & S. Satya. 2011. Repellent, larvicidal and pupicidal properties of essential oils and their formulations against the housefly, Musca domestica. Med. Vet. Entomol. 25: 302-310. https://doi.org/10.1111/j.1365-2915.2011.00945.x
Maliselo, S. & P. Mwaanga. 2016. Effects of pH, moisture and excreta age on ammonia emission in a poultry house: a case study for Kitwe, Zambia. Int. J. Sci. Res. Publ. 6: 73-76.
Min, B. R., W. E. Pinchak, R. C. Anderson, & T. R. Callaway. 2007. Effect of tannins on the in vitro growth of Escherichia coli O157: H7 and in vivo growth of generic Escherichia coli excreted from steers. J. Food Prot. 70: 543-550. https://doi.org/10.4315/0362-028X-70.3.543
Morey, R. A. & A. J. Khandagle. 2012. Bioefficacy of essential oils of medicinal plants against housefly, Musca domestica L. Parasitol. Res. 111: 1799-1805. https://doi.org/10.1007/s00436-012-3027-2
Nazzaro, F., F. Fratianni, L. De Martino, R. Coppola, & V. De Feo. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 6: 1451-1474. https://doi.org/10.3390/ph6121451
Neeraj, V. B. & V. Johar. 2017. Bael (Aegle marmelos) extraordinary species of India: A Review. Int. J. Curr. Microbiol. Appl. Sci. 6: 1870-1887. https://doi.org/10.20546/ijcmas.2017.603.213
Pastawan, V., Y. Erwanto, L. M. Yusiati, Jamhari, T. Hayakawa, T. Nakagawa & N. A. Fitriyanto. 2017. Ability of indigenous microbial consortium in the process of ammonia oxidation of livestock waste. Asian J. Anim. Sci. 11:74-81. https://doi.org/10.3923/ajas.2017.74.81
Patra, J. K. & K. H. Baek. 2016. Antibacterial activity and action mechanism of the essential oil from Enteromorpha linza L. against foodborne pathogenic bacteria. Molecules. 21: 1-11. https://doi.org/10.3390/molecules21030388
Putra, R. E., A. Rosyad & I. Kinasih. 2013. Growth and development of Musca domestica Linnaeus (Diptera: Muscidae) larvae in different livestock manures. J. Entomol. Indones. 10: 31-38. https://doi.org/10.5994/jei.10.1.31
Rajan S. M. Gokila, P. Jency, P. Brindha, & R. K. Sujatha. 2011. Antioxidant and phytochemical properties of Aegle marmelos fruit pulp. Int. J. Curr. Pharm. Res. 3: 65-70.
Riaz, B., M. K. Zahoor, M. A. Zahoor, H. N. Majeed, I. Javed, A. Ahmad, F. Jabeen, M. Zulhussnain, & K. Sultana. 2018. Toxicity, phytochemical composition, and enzyme inhibitory activities of some indigenous weed plant extracts in fruit fly, Drosophila melanogaster. Evidence-Based Complementary and Alternative Medicine. 2018: 1-11. https://doi.org/10.1155/2018/2325659
Rothrock Jr, M. J., K. L. Cook, N. Lovanh, J. G. Warren, & K. Sistani. 2008. Development of a quantitative real-time polymerase chain reaction assay to target a novel group of ammonia-producing bacteria found in poultry litter. Poult. Sci. J. 87: 1058-1067. https://doi.org/10.3382/ps.2007-00350
Saif, M. M. S., A. A. Al-Fakih & M. A. M. Hassan. 2017. Antibacterial activity of selected plant (Aqueous and methanolic) extracts against some pathogenic bacteria. J. Pharmacogn. Phytochem. 6: 1929-1935.
Singh, G., Shamsuddin M. R., Aqsha, & Lim S. W. 2018. Characterization of chicken manure from Manjung region. IOP Conf. Ser. Mater. Sci. Eng. 458: 1-6. https://doi.org/10.1088/1757-899X/458/1/012084
Wells, J. E., E. D. Berry, M. N. Guerini, & V.H. Varel. 2014. Evaluation of essential oils in beef cattle manure slurries and applications of select compounds to beef feedlot surfaces to control zoonotic pathogens. J. Appl. Microbiol. 118: 295–304. https://doi.org/10.1111/jam.12689
Wolfe, M. K., H. N. Dentz, B. M., A. Beryl, M. Mureithi, T. Wolfe, C. Nul, & A. J. Pickering. 2017. Adapting and evaluating a rapid, low-cost method to enumerate flies in the household setting. Am. J. Trop. Med. Hyg. 96: 449-456. https://doi.org/10.4269/ajtmh.16-0162
Wood, D. J. & B. J. Van Heyst. 2016. A review of ammonia and particulate matter control strategies for poultry housing. Transactions of the ASABE. 59: 329-344. https://doi.org/10.13031/trans.59.10836
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.