Genetic Variation of Eight Indonesian Swamp-Buffalo Populations Based on Cytochrome b Gene Marker

  • M. Rusdin Department of Animal Science, Faculty of Animal Science, Halu Oleo University https://orcid.org/0000-0001-7260-1508
  • D. D. Solihin Department of Biologi, Faculty of Mathematic and Natural Science, IPB University
  • A. Gunawan Department of Animal Production and Technology, Faculty of Animal Science, IPB University
  • C. Talib Indonesian Center for Animal Research and Development
  • C. Sumantri Department of Animal Production and Technology, Faculty of Animal Science, IPB University
Keywords: Cytochrome b, local swamp buffalo, polymorphic sites, specific nucleotides

Abstract

Genetic variation is a major concern in animal genetic resources conservation program. This study aimed to analyze genetic variation and phylogeography of eight Indonesian swamp-buffalo populations based on cytochrome b gene marker. A total of 78 DNA fragment samples originating from eight Indonesian swamp-buffalo populations were used in this study, namely Bombana Island, Bombana mainland, Kolaka, Konawe, North Toraja, West Nusa Tenggara, Banten, and Aceh with 11, 10, 13, 14, 10, 10, 5, and 5 samples, respectively. The cytochrome b gene sequence and genetic variation parameters were analyzed in MEGA software (ver 6), and DnaSP software (ver 5.10.01). The results of this study showed that all DNA-fragment samples were successfully amplified by PCR technique with the size target (906 bp). Based on the distribution of all samples, it was found 9 polymorphic sites, and 10 haplotypes with the haplotype diversities were 0.6590. The average of genetic distances between populations ranged from 0.0000-0.002. They were grouped into two main clusters. The first cluster consisted of Aceh, North Toraja, West Nusa Tenggara, Banten, Kolaka, and Konawe populations, meanwhile, the second cluster consisted of Bombana Island, Bombana mainland, Kolaka, and Konawe populations. The results of the study were concluded that eight Indonesian local swamp-buffalo populations were grouped into two main clusters where Bombana Island and Bombana mainland populations were specific breeds because they were only found in the second cluster and also had specific nucleotides sites on the 57 nucleotides which C base changed to T. The results of this study were useful in formulating the program of conservation and utilization of Indonesian buffalo genetic resources, especially in the buffalo population with specific breeds.

Downloads

Download data is not yet available.

References

Amin, M., E. Suarsini, I. Azmi, & A. Gofur. 2016. Phylogenetic analysis of local endemic buffalo (Bubalus bubalis) based on cytochrome b gene in central Indonesia. J. Teknologi (Science and Angineering) 78:393-397. https://doi.org/10.11113/jt.v78.8343

Anggraeni, A., C. Sumantri, L. Praharani, & E. Andreas. 2011. Genetic distance estimation of local swamp buffaloes through morphology analysis approach. Jurnal Ilmu Ternak dan Veteriner 16: 199−210.

Arif, I.A. & H.A. Khan. 2009. Molecular markers for biodiversity analysis of wildlife animals: a brief review. Anim. Biodiv. Conserv. 32: 9-17.

Avise, J.C. 1994. Molecular Markers, Natural History and Evolution. Chapman and Hall, New York. https://doi.org/10.1007/978-1-4615-2381-9

Browers, N., J.R. Stauffer & T.D. Kocher. 1994. Intra and interspecific mitochondrial DNA sequence variation within two species of rock-dwelling Cichlids (Teleostei: Cichlidae) from Lake Malawi, Africa. Mol. Phylogenet. Evol. 3:75–82. https://doi.org/10.1006/mpev.1994.1009

Coroian, C.O., A. Coroian, V. Mireșan, M. Şuteu, C. Laţiu, & C. Raducu. 2015. New MTCYB haplotypes in Romanian Buffalo. Bulletin UASVM Animal Science and Biotechnologies 72: 142-147. https://doi.org/10.15835/buasvmcn-asb:11552

[Ditjen PKH] Direktorat Jenderal Peternakan dan Kesehatan Hewan Kementerian Pertanian Republik Indonesia. 2018. Statistika Peternakan dan Kesehatan Hewan 2018. Ditjen PKH Kementan RI, Jakarta.

Doosti, A., P.G. Dehkordi, & E. Rahimi. 2014. Molecular assay to fraud identification of meat products. J. Food Sci. Technol. 51:148–152. https://doi.org/10.1007/ s13197-011-0456-3

FAOSTAT. 2015. FAO Statistical Yearbook. http://faostat3.fao.org. [25 October 2015].

FAOSTAT. 2018. FAO Statistical Yearbook. http://faostat3.fao.org. [23 July 2019].

Hartatik, T., W.B.P. Putra, S.D. Volkandari, & Sumadi. 2015. Polymorphism of mtDNA cytochrome b gene of local cattle in Indonesia. J-SustaiN 3:21-24. https://doi.org/10.24910/jsustain/3.1/2124

Hartatik, T., D. Maharani, J.H.P. Sidadolog, A. Fathoni, & Sumadi. 2018. Haplotype diversity of partial cytochrome b gene in Kebumen ongole grade cattle. Trop. Anim. Sci. J. 41:8-14. https://doi.org/10.5398/tasj.2018.41.1.8

Hussain, T., M.E. Babar, M.D. Donato, A. Wajid, A. Nadeem, Z. Ahmad, W.A Khan, S.O. Peters, & I.G. Imumorin. 2018. Phylogeny of Pakistani cattle breeds using mitochondrial cytochrome b gene. Pakistan J. Zool. 50: 2029-2035. https://dx.doi.org/10.17582/journal.pjz/2018.50.6.2029.2035

Kathiravan, P., R.S. Kataria, B.P. Mishra, P.K. Dubey, D.K. Sadana, & B.K. Joshi. 2011. Population structure and phylogeography of Toda buffalo in Nilgiris throw light on possible origin of aboriginal Toda tribe of South India. J. Anim. Breed. Genet. 128:295–304. https://dx.doi.org/10.1111/j.1439-0388.2011.00921.x

Kim, J.H., M.J. Byun, K. Myung-Jick, S.W. Suh, K. Yeoung-Gyu, C.W. Lee, J. Kyoung-Sub, E.S. Kim, D.J. Yu, W.H. Kim, & C. Seong-Bok. 2013. mtDNA Diversity and Phylogenetic State of Korean Cattle Breed, Chikso Asian-Australas. J. Anim Sci. 26163-170. http://dx.doi.org/10.5713/ajas.2012.12499

Lau, C.H, R.D. Drinkwater, K. Yusoff, S.G. Tan, D.J. Hetzel, & J.S.F. Barker. 1998. Genetic diversity of Asian water buffalo (Bubalus bubalis): mitochondrial DNA D-loop adn cytochorome b sequence variation. Anim. Genet. 29:253-264. https://doi.org/10.1046/j.1365-2052.1998.00309.x

Lei, C.Z., W. Zhang, H. Chen, F. Lu, Q.L. Ge, R.Y. Liu, R.H. Dang, Y.Y. Yao, L.B. Yao, Z.F. Lu, & Z-I. Zhao. 2007. Two maternal lineages revealed by mitochondrial DNA D-loop sequences in Chinese native water buffaloes (Bubalus bubalis). Asian-Australas. J. Anim Sci. 20:471-476. https://doi.org/10.5713/ajas.2007.471

Lei, C.Z., C.M. Zhang, S. Weining, M.G. Campana, M.A. Bower, X.M Zhang, L. Liu, X.Y. Lan, & H. Chen. 2011. Genetic diversity of mitochondrial cytochrome b gene in Chinese native buffalo. Anim. Genet. 42:432–436. https://doi.org/10.1111/j.1365-2052.2011.02174.x

Linacre, A., & S.S. Tobe. 2011. An overview to the investigative approach to species testing in wildlife forensic science. Investig Genet. Open Access. BioMed Central. 2:1-9 https://doi.org/10.1186/2041-2223-2-2

Nicholas, F.H. 2010. Introduction to Veterinary Genetics. 3rd ed. Wiley-Blackwell Publising Ltd, UK.

Pakpahan, S., W.T. Artama, R. Widayanti, & G. Suparta. 2016. Genetic Characteristics and relationship in different goat populations of Indonesia based on cytochrome b gene sequences. Asian J. Anim. Sci. 10:29-38. https://doi.org/10.3923/ajas.2016.29.38

Qiptiyah, M., S. Pudyatmoko, A. Widyatmoko, M.A. Imron, & I. Nurtjahjaningsih. 2019. Cytochrome b mitochondrial DNA characteristic from non-invasive samples of wild population Javan Banteng (Bos javanicus d’Alton, 1823). Biodiversitas 20:350-355. https://doi.org/10.13057/biodiv/d200207

Rozas, J., P. Librado, J.C. Sanchez-DelBarrio, X. Messeguer, & R. Rozas. 2010. DNA Sequence Polymorphism Version 5.10.01. http:/www.ub.es/dnasp

Saif, R., M.E. Babar, A.R. Awan, A. Nadeem, A.S. Hashmi, & T. Hussain. 2012. DNA fingerprinting of Pakistani buffalo breeds (Nili-Ravi, Kundi) using microsatellite and cytochrome b gene markers. Mol. Biol. Rep. 39:851–856. https://doi.org/10.1007/s11033-011-0808-0

Sambrook, J., & D.W. Russell. 2001. Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press, USA.

Saputra, F, Jakaria, & C. Sumantri. 2013. Genetic variation of mtDNA Cytochrome Oxidase Subunit I (COI) in local swamp buffaloes in Indonesia. Med. Pet. 36:165-170 https://doi.org/10.5398/medpet.2013.36.3.165

Sumantri, C., A. Gunawan, & A. Anggraeni. 2017. Karakteristik Genetik Kerbau Lokal dan Prospek Pengembangannya. IPB Press, Bogor.

Sukri, A., M. Amin, A. Winaya, & A. Gofur. 2014. Substitution and haplotype diversity analysis on the partial sequence of the mitochondrial DNA Cyt b of Indonesian Swamp Buffalo (Bubalus bubalis). Biomedich. 3:65-70. https://doi.org/10.14421/biomedich.2014.32.59-63

Tarekegn, G.M., X-Y. Ji, X. Bai, B. Liu, W. Zhang, J. Birungi, A. Djikeng, & K. Tesfaye. 2018. Variations in mitochondrial cytochrome b region among Ethiopian indigenous cattle populations assert Bos taurus maternal origin and historical dynamics. Asian-Australas. J. Anim Sci. 31:1393-1400. https://doi.org/10.5713/ajas.17.0596

Talib, C., T. Herawati, & Hastono. 2014. Strategi peningkatan produktivitas kerbau melalui perbaikan pakan dan genetik. Wartazoa 24: 83-96.

Tamura, K., G. Stecher, D. Peterson, A. Filipski, & S. Kumar. 2013. MEGA 6: Molecular evolutionary genetics analysis version. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197

Wang, S., N. Chen, M.R. Capodiferro, T. Zhang, H. Lancioni, H. Zhang, Y. Miao, V. Chanthakhoun, M. Wanapat, M. Yindee, Y. Zhang, H. Lu, L. Caporali, R. Dang, Y. Huang, X. Lan, M. Plath, H. Chen, J.A. Lenstra, A. Achilli, & C. Lei. 2017. Whole mitogenomes reveal the history of swamp buffalo: initially shaped by glacial periods and eventually modelled by domestication. Scientific Reports. 7:4708. https://doi.org/10.1038/s41598-017-04830-2

Xuan, T.P, S.E. Georgescu, M.A. Manea, A.O. Hermenean, & M. Costache. 2010. Genetic diversity and phylogenetic relationship of Romanian cattle breeds inferred from cytochrome b gene partial sequences. Rom. Biotechnol. Lett. 15: 5154-5158.

Yindee, M. 2010. Reproduction and genetic diversity of the swamp buffalo. Acad. Thesis, Utrecht University, Utrecht. ISBN 978-90-393-5399-8. (Chapter 5 – High diversity of the mitochondrial DNA of the Thai swamp buffalo indicates a domestication in Southeast Asia, pp. 63-76). http://igiturarchive.library.uu.nl/dissertations/2011-0121-200244/Yindee.pdf.

Yue, X-P., R. Li, W-M. Xie, P. Xu, T-C. Chang, L. Liu, F. Cheng, R-F. Zhang, X-Y. Lan, Hong Chen, et al. 2013. Phylogeography and domestication of Chinese swamp buffalo. Plos One 8:1-13. https://doi.org/10.1371/journal.pone.0056552

Zardoya, R. & A. Meyer. 1996. Phylogenetic performance mitochondrial protein coding genes in resolving relationship among vertebrate. Mol. Biol. Evol. 13: 933-942.

Zhang, Y., D. Vankan, Y. Zhang, & J.S.F. Barker. 2011. Genetic differentiation of water buffalo (Bubalus bubalis) populations in China, Nepal and south-east Asia: inferences on the region of domestication of the swamp buffalo. Anim Genet. 42:366-377. https://doi.org/10.1111/j.1365-2052.2010.02166.x

Zhang, Y.I., L.U. Yongfang, M. Yindee, K-Y. Li, H-Y. Kuo, Y-T. Ju, S. Ye, M.D.O. Faruque, Q. Li, Y. Wang et al. 2016. Strong and stable geographic differentiation of swamp buffalo maternal and paternal lineages indicates domestication in the China/Indochina border region. Mol. Ecol. 25: 1530-1550. https://doi: 10.1111/mec.13518

Published
2020-02-26
How to Cite
Rusdin, M., Solihin, D. D., Gunawan, A., Talib, C., & Sumantri, C. (2020). Genetic Variation of Eight Indonesian Swamp-Buffalo Populations Based on Cytochrome b Gene Marker. Tropical Animal Science Journal, 43(1), 1-10. https://doi.org/10.5398/tasj.2020.43.1.1