Genetic Diversity of the Structure of HSP70 Gene in Kampung Unggul Balitbangtan (KUB), Walik, and Kate Walik Chickens
Abstract
Our research was designed to identify the sequence variations of heat shock protein 70 (HSP70) gene in three breeds of native Indonesian chickens, Kampung Unggul Balitbangtan (KUB) chicken, Walik chicken, and Kate Walik chicken. Total DNA was isolated from the whole blood using a DNeasy blood and tissue kit. The HSP70 gene was amplified and sequenced from 94 chickens using PCR. The amplification product was 787 bp long, consisting of a 210 bp promoter region, a 112 bp long 5′untranslated region (UTR), and a 465 bp protein coding region. Our KUB, Walik, and Kate Walik chicken HSP70 gene sequence alignments express genetic diversity in the promoter region (insertions and deletions), 5′UTR (deletions and nucleotide substitutions), and at the beginning of the coding region (nucleotide substitutions). Four haplotypes, H1, H2, H3, and H4, were identified in the HSP70 gene protein coding region. The haplotype H2 was found in all three chickens, while H4 was only found in Walik chicken. The H4 is a novel haplotype which never reported before. Based on a median-joining network analysis, H4 is a haplotype produced by mutations at two specific sites (g.370A>G and g.388C>G) in the protein coding region of the HSP70 gene of the chicken. It could be concluded that Walik chicken can be used as a standard for heat stress genotyping in Indonesian local chickens, because it has complete HSP70 gene haplotypes.
References
Archana, P. R., I. Aleena, P. Pragua, M. K. Vidya, A. P. A. Niyas, M. Bagath, G. Krishnan, A. Manimaran, V. Beena, E. K. Kurien, V. Sejian, & R. Bhatta. 2017. Role of heat shock proteins in livestock adaptation to heat stress. J. Dairy Vet. Anim. Res. 5:00127. https://doi.org/10.15406/jdvar2017.05.00127
Akerfelt, M., R. I. Morimoto, & L. Sistonen. 2010. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11:545-555. https://doi.org/10.1038/nrm2938
Carabańo, M.J., M. Ramŏn, A. Menéndez-Buxadera, A. Molina & C. Diaz. 2019. Selecting for heat tolerance. Animal Font. 9:62-68. https://doi.org/10.1093/af/vfy033
Chen, Z. Y., W. W. Zhang, J. K. Gan, L. N. Kong, X. Q. Zhang, D. X. Zhang, & Q. B. Luo. 2016. Genetic effect of an A/G polymorphism in the HSP70 gene on thermotolerance in chicken. Genet. Mol. Res. 15: gmr.15028271. https://doi.org/10.4238/gmr.15028271
Duangjinda, M., S. Tunim, C. Duangdaen, & W. Boonkum. 2017. HSP70 genotypes and heat tolerance of commercial and native chickens reared in hot and humid conditions. Braz. J. Poultry Sci. 19:007-018. https://doi.org/10.1590/1806-9061-2016-0245.
Fathi, M.M., A. Galal, S. El-Safty, & M. Mahrous. 2013. Naked neck and frizzle genes for improving chickens raised under high ambient temperature: I. Growth performance and egg production. World’s Poult. Sci. J. 69:813-832. https://doi.org/10.1017/S0043933913000834
Fathi, M.M., A. Galal, S. El-Safty, & M. Mahrous. 2014. Naked neck and frizzle genes for improving chickens raised under high ambient temperature: II. Blood parameters and immunity. World’s Poult. Sci. J. 70:165-172. https://doi.org/10.1017/S0043933914000142
Fujimoto, M., & A. Nakai. 2010. The heat shock factor family and adaptation to proteotoxic stress. FEBS J. 277:4112-4125. https://doi.org/10.111/j.1742-4658.2010.07827.x
Gan, J.K., D.X. Zhang, D.I. He, X.Q. Zhang, Z.Y. Chen, & Q.B. Luo. 2013. Promoter methylation negatively correlated with mRNA expression but not tissue differential expression after heat stress. Genet. Mol. Res. 12:809-819. https://dx.doi.org/10.4238/2013.MARCH.15.1
Gan, J. K., L. Y. Jiang, L. N. Kong, X. Q. Zhang, & Q. B. Luo. 2015. Analysis of genetic diversity of the heat shock protein 70 gene on the basis of abundant sequence polymorphisms in chicken breeds. Genet. Mol. Res. 14:1538-1545. https://dx.doi.org/10.4238/2015.March.6.1
Gardiner-Garden, M., & M. Frommer. 1987. CpG islands in vertebrate genomes. J. Mol. Biol. 196:261-282. https://doi.org/10.1016/0022-2836(87)90689-9
Hall, T. 2011. Bioedit: An important software for molecular biology. GERF Bull Biosciences. 2:60-61.
Leigh, J. W., & D. Bryant. 2015. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6:1110-1116. https://doi.org/10.1111/2041-210X.12410
Leppek, K., R. Das, & M. Barna. 2018. Functional 5’UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell. Biol. 19:158-174. https://doi.org/10.1038/nrm.2017.103
Liang, H. M., D. Y. Lin, Y. D. Hsuuw, T. P. Huang, H. L. Chang, C. Y. Lin, H. H. Wu, & K. H. Hung. 2016. Association of heat shock protein 70 gene polymorphisms with acute thermal tolerance, growth, and egg production traits of native chickens in Taiwan. Arch. Anim. Breed. 59:173-181. https://doi.org/10.5194/aab-59-173-2016
Mazzi, C. M., J. A. Ferro, M. I. T. Ferro, V. J. M. Savino, A. A. D. Coelho, & M. Macari. 2003. Polimorphism analysis of the hsp70 stress gene in broiler chickens (Gallus gallus) of different breeds. Gen. Mol. Biol. 26:275-281. https://doi.org/10.1590/S1415-47572003000300010
Mohamed, A. S. A., A. R. Lozovskiy, & A. M. A. Ali. 2019. Strategies to combat the deleterious impacts of heat stress through feed restrictions and dietary supplementation (vitamins, minerals) in broilers. J. Indonesian Trop. Anim. Agric. 44:155-166. https://doi.org/10.14710/jitaa.44.2.155-166
Morimoto, R. I., C. Hunt, S. Y. Huang, K. L. Berg, & S. S. Benerji. 1986. Organization, nucleotide sequence, and transcription of the chicken HSP70 gene. J. Biol. Chem. 261:12692-12699.
Nataamijaya, A. G. 2010. Pengembangan potensi ayam lokal untuk menunjang peningkatan kesejahteraan petani. Jurnal Litbang Pertanian 29:131-138.
Ng, C. S., P. Wu, J. Foley, A. Foley, M-L. McDonald, W-T Juan, C-J Huang, Y-T. Lai, W-S. Lo, C-F. Chen, S. M. Leal, H. Zhang, R. B. Widelitz, P. I Patel, W-H Li, & C-M. Chuong. 2012. The chicken frizzle feather is due to an α-Keratin (KRT75) mutation that causes a defective rachis. PLoS Genet. 8:e1002748. https://doi.org/10.1371/journal.pgen.1002748
Pelham, H. R. B. 1982. A regulatory upstream promoter element in the Drosophila HSP70 heat-shock gene. Cell. 30:517-528. https://doi.org/10.1016/0092-8674(82)90249-5
Rayani, T. F., R. Mutia, & Sumiati. 2017. Supplementation of zinc and vitamin E on apparent digestibility of nutrient, carcass traits, and mineral availability in broiler chickens. Med. Pet. 40:20-27. https://doi.org/10.5398/medpet.2017.40.1.20
Said, S., & W. P. B. Putra. 2018. Novel single nucleotide polymorphisms (SNPs) in the 5’UTR of bovine heat shock protein 70 (bHSP70) gene and its association with service per conception (S/C) of pasundan cattle [short communication]. Biodiversitas 19:1622-1625. https://doi.org/10.13057/biodiv/d190504
Sartika, T., S. Iskandar, & B. Tiesnamurti. 2016. Sumberdaya Genetik Ayam Lokal Indonesia dan Prospek Pengembangannya. IAARD Press, Jakarta.
Tamura, K., G. Stecher, D. Peterson, A. Filipski, & S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
Tamzil, M. H., R. R. Noor, P. S. Hardjosworo, W. Manalu, & C. Sumantri. 2013a. Keragaman gen heat shock protein 70 pada ayam kampung, ayam arab dan ayam ras. J. Vet. 14:317-326.
Tamzil, M. H., R. R. Noor, P. S. Hardjosworo, W. Manalu, & C. Sumantri. 2013b. Acute heat stress responses of three lines of chickens with different heat shock protein (HSP)-70 genotypes. Int. J. Poult. Sci. 12:264-272.
Tamzil, M. H. 2014. Stres panas pada unggas: metabolisme, akibat dan upaya penanggulangannya. Wartazoa 24:57-66.
Tkáčová, J., & M. Angelovičová. 2012. Heat shock protein (HSPs): a review. J. Anim. Sci. Biotechnol. 45:349-353.
Xia, M., J. Gan, Q. Luo, X. Zhang, & G. Yang. 2013. Identification of duck HSP70 gene, polymorphism analysis and tissue expression under control and heat stress conditions. Br. Poult. Sci. 54:562-566. https://dx.doi.org/10.1080/00071668.2013.819487
Zhang, W. W., X. Xiao, J. K. Gan, X. Q. Zhang, L. N. Kong, & Q. B. Luo. 2015. Characterization of HSP70 and its expression in tissue: correlation with physiological and immune indices in goose (Anser cygnoides) serum. Genet. Mol. Res. 14:12288-12298. https://doi.org/10.4238/2015.October.9.17
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.