Improvement of Bovine Split Hide Gelatin Quality by Addition of Soy Protein Isolate Using Transglutaminase Enzyme

D. Wulandari, Y. Erwanto, Y. Pranoto, Rusman Rusman, R. Yuliatmo

Abstract

Bovine split hide is the subcutis layer with the low percentage of collagen so that the quality of the gelatin is different from that of the gelatin from cattle’s skin. This study aims to improve the characteristics of bovine split hide gelatin combined with soy protein isolate (SPI) using transglutaminase (TGase) enzyme as a protein cross-linking agent. The study was conducted using a completely randomized design with 3 x 3 factorial pattern consisting of three levels of a mixture of bovine split hide gelatin : SPI at the ratios of 90 : 10, 80 : 20, 70 : 30, and three concentrations of transglutaminase enzyme, i.e. 10, 20, and 30 U. The results showed that treatments significantly affected viscosity, gel strength, the moisture, ash, fat, and protein content of gelatin. Electrophoresis of gelatin protein showed bands distribution between 60-190 kDa. The amino acid profile of the gelatin was similar to that of collagen with a high level of aspartate, glutamate, cysteine, and proline. Morphology of gelatin was observed by Scanning Electronic Microscope (SEM) and showed a compact distributed collagen crosslink. The combination of gelatin bovine split hide and SPI at the ratio of 90 : 10 provides the best physicochemical characteristic.

References

Al-Hassan, A. A. & M. H. Norziah. 2017. Effect of transglutaminase induced crosslinking on the properties of starch/gelatin films. Food Packag. Shelf Life 13:15-19. https://doi.org/10.1016/j.fpsl.2017.04.006

AOAC. 2012. Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists Inc., Arlington.

Calvarro, J., T. Perez-Palacios, & J. Ruiz. 2016. Modification of gelatin functionality for culinary applications by using transglutaminase. Int. J. Gastron. Food Sci. 5-6:27-32. https://doi.org/10.1016/j.ijgfs.2016.11.001

Chambi, H. & C. Grosso. 2006. Edible films produced with gelatin and casein cross-linked with transglutaminase. Food Res. Int. 39:458-466. https://doi.org/10.1016/j.foodres.2005.09.009

Erwanto, Y., M. Z. Abidin, E. Y. P. Muslim, S. Sugiyono, & A. Rohman. 2014. Identification of pork contamination in meatballs of Indonesia local market using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Asian-Australasian J. Anim. Sci. 27:1487-1492.
https://doi.org/10.5713/ajas.2014.14014

Guo, G., C. Zhang, H. Li, A. Xiang, W. Zou, H. Tian, & Z. Du. 2015. Structure and property of biodegradable soy protein isolate/PBAT blends. Ind. Crops Prod. 74:731-736. https://doi.org/10.1016/j.indcrop.2015.06.009

Han, M.Y., H. Z. Zu, X. L. Xu, & G. H. Zhou. 2015. Microbial Transglutaminase Catalyzed the Cross-Linking of Myofibrillar/Soy Protein Isolate Mixtures. J. Food Process. Preserv. 39:309-317. https://doi.org/10.1111/jfpp.12316

Kieliszek, M. & A. Misiewicz. 2014. Microbial transglutaminase and its application in the food industry. A review. Folia Microbiol. (Praha). 59:241-250. https://doi.org/10.1007/s12223-013-0287-x

Kyriakopoulou,i K., B. Dekkers, & A. J. van der Goot. 2018. Plant-Based Meat Analogues. In Sustainable Meat Production and Processing. Peer Reviewer Book Chapter. Charis Galanakis, Academic Press. p.103-126. https://doi.org/10.1016/B978-0-12-814874-7.00006-7

Laemmli, U.K. 1970. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 227:680-685. https://doi.org/10.1038/227680a0

Lawrie, R.A. 2017. Chemical and biochemical constitution of muscle. In Lawrie’s Meat Science. 8th ed. CRC Press Boca Raton Boston New York Washington, DC. pp. 75-127. https://doi.org/10.1533/9781845691615.75

Liu, H.Y., J. Han, & S. D. Guo. 2009. Characteristics of the gelatin extracted from Channel Catfish (Ictalurus punctatus) head bones. LWT - Food Sci. Technol. 42:540-544. https://doi.org/10.1016/j.lwt.2008.07.013

Said, M.I., S. Triatmojo, Y. Erwanto, & A. Fudholi. 2012. Gelatin properties of goat skin produced by calcium hydroxide as curing material. Med. Pet. 34:184-189. https://doi.org/10.5398/medpet.2011.34.3.184

Steffen W., F. C. Ko, J. Patel, V. Lyamichev, T. J. Albert, J. Benz, M. G. Rudolph, F. Bergmann, T. Streidl, P. Kratzsch, M. Boenitz-Dulat, T. Oelschlaegel, & M. Schraeml. 2017. Discovery of a microbial transglutaminase enabling highly site-specific labeling of proteins. J. Biol. Chem. 292:15622-15635. https://doi.org/10.1074/jbc.M117.797811

Sulaiman, N. B., I. I. Arief, & C. Budiman. 2016. Characteristic of lamb sausages fermented by Indonesian meat-derived probiotic, Lactobacillus plantarum IIA-2C12, and Lactobacillus acidophilus IIA-2B4. Med Pet. 39:104-111. https://doi.org/10.5398/medpet.2016.39.2.104

Wangtueai, S., A. Noomhorm, & J. M. Regenstein. 2010. Effect of microbial transglutaminase on gel properties and film characteristics of gelatin from lizardfish (Saurida spp.) scales. J. Food Sci. 75:731-739. https://doi.org/10.1111/j.1750-3841.2010.01835.x

Wang, Y., A. Liu, R. Ye, W. Wang, & X. Li. 2015. Transglutaminase-induced crosslinking of gelatin-calcium carbonate composite film. J. Food Chem. 166: 414-422. https://doi.org/10.1016/j.foodchem.2014.06.062

Weng, W. & H. Zheng. 2015. Effect of transglutaminase on properties of tilapia scale gelatin films incorporated with soy protein isolate. Food Chem. 169:255-260. https://doi.org/10.1016/j.foodchem.2014.08.012

Wulandari, D., S. Triatmojo, Y. Erwanto, & Y. Pranoto. 2016. Physicochemical properties and amino acid and functional group profiles of gelatin extracted from bovine split hide cured by acid. Pak. J. Nutr. 15:655-661.
https://doi.org/10.3923/pjn.2016.655.661

Wulandari, D., R. Yuliatmo, & Sugiyanto. 2018. The effect of coating of edible film from bovine split hide gelatin on beef meatballs properties. J. Indonesian Trop. Anim. Agric. 43:177-183. https://doi.org/10.14710/jitaa.43.2.177-183

Xing, G., C. V. L. Giosafatto, X. Rui, M. Dong, & L. Mariniello. 2019. Microbial transglutaminase-mediated polymerization in the presence of lactic acid bacteria affects antigenicity of soy protein component present in bio-tofu. J. Funct. Foods, 53:292-298. https://doi.org/10.1016/j.jff.2018.12.035

Ye, R., X. Li, Y. Wang, A. Liu, & W. Wang. 2014. Transglutaminase-induced crosslinking of gelatin-calcium carbonate composite films. Food Chem. 166:414-422. https://doi.org/10.1016/j.foodchem.2014.06.062

Yew, S.E., T. J. Lim, L. C. Lew, R. Bhat, A. Mat-Easa, & M. T. Liong. 2011. Development of a probiotic delivery system from agrowastes, soy protein isolate, and microbial transglutaminase. J. Food Sci. 76:108-115.
https://doi.org/10.1111/j.1750-3841.2011.02107.x

Yoo, S.H. & Y.H. Chang. 2016. Volatile compound, physicochemical, and antioxidant properties of beany flavor-removed soy protein isolate hydrolyzates obtained from combined high temperature pre-treatment and enzymatic hydrolysis. Prev. Nutr. Food Sci. 21:338-347. https://doi.org/10.3746/pnf.2016.21.4.338

Authors

D. Wulandari
dwiw2313@gmail.com (Primary Contact)
Y. Erwanto
Y. Pranoto
Rusman Rusman
R. Yuliatmo
WulandariD., ErwantoY., PranotoY., RusmanR., & YuliatmoR. (2019). Improvement of Bovine Split Hide Gelatin Quality by Addition of Soy Protein Isolate Using Transglutaminase Enzyme. Tropical Animal Science Journal, 42(3), 237-244. https://doi.org/10.5398/tasj.2019.42.3.237

Article Details

List of Cited By :

Crossref logo