Polymorphisms and Associations of the NRAMP-1 and iNOS Genes on Newcastle Disease and Salmonella enteritidis Resistances in SenSi-1 Agrinak Chickens
Abstract
NRAMP-1 and iNOS genes were reported to be associated with a defense mechanism against bacteria and virus infections. This study aimed to identify NRAMP-1 and iNOS genes polymorphisms and their associations with the defense mechanisms against Salmonella enteritidis and Newcastle Disease (ND) in SenSi-1 Agrinak chicken. The present study used a total number of 172 SenSi-1 Agrinak chicken. Identifications of NRAMP-1 and iNOS genes polymorphisms were performed by PCR-RFLP method. NRAMP-1 and iNOS genotypes were associated with immunoglobulin Y (IgY) concentration, specific antibodies against S. enteritidis and ND using General Linear Model (GLM). Immunity characteristics were further grouped into high, medium, and low categories. NRAMP-1|SacI exon 11 and iNOS|AluI intron 24 in SenSi-1 Agrinak chickens were polymorphic. TC genotype has a higher immune response to infectious agents compared to TT and CC genotypes. The frequency of C allele was higher than the T allele in the concentration of immunoglobulin Y (IgY), antibodies titers against S enteritidis and ND. The TC genotype of NRAMP-1 gene was significantly associated with ND antibody titers, and the TT genotype of iNOS was significantly associated with S. enteritidis specific antibody. NRAMP-1 and iNOS genes can be used as potential candidate genes for immune traits in SenSi-1 Agrinak chickens.
References
Allendorf, F.W., G. Luikar, & S.N. Aitken. 2013. Conservation and the genetics of population. 2nd ed. Wiley-Blackwell, Oxford.
Bauler, T.J., T. Starr, T.A. Nagy, S. Sridhar, D. Scott, C.W. Winkler, O. Steele-Mortimer, C.S. Detweiler, & K.E. Peterson. 2017. Salmonella meningitis associated with monocyte infiltration in mice. Am. J. Pathol. 187: 187-199. https://doi.org/10.1016/j.ajpath.2016.09.002
Botstein, D, R.L. White, M. Skolnick, & R.W. Davis. 1980. Construction of genetic linkage map in human using restriction fragmen length polymorphisms. Amer. J. Hum. Genet. 32: 314-331.
Cellier, M.F.M. 2017. Developmental control of NRAMP-1 (SLC11A1) expression in professional phagocytes. Biology 6: 28. https://doi.org/10.3390/biology6020028
Cherayil, B.J. 2011. The role of iron in the immune response to bacterial infection. Immunol. Res. 50: 1-9. https://doi.org/10.1007/s12026-010-8199-1
Dai, C.H., J.Y. Wu, C.X. Zhao, L.H. Yu, W.B. Bao, & S.L. Wu. 2017. NRAMP-1 gene expression in different tissues of meishan piglets from newborn to weaning. Genet. Mol. Res. 16: 1-10. https://doi.org/10.4238/gmr16019288
Delgado, F., C. Estrada-Chávez, M. Romano, F. Paolicchi, F. Blanco-Viera, F. Capellino, G. Chavez-Gris, & A.L. Pereira-Suárez. 2010. Expression of NRAMP-1 and iNOS in mycobacterium avium subsp. paratuberculosis naturally infected cattle. Comp. Immunol. Microbiol. Infect. Dis. 33: 389-400. https://doi.org/10.1016/j.cimid.2009.03.001
Dincel, G.C. & O. Kul. 2015. eNOS and iNOS trigger apoptosis in the brains of sheep and goats naturally infected with the border disease virus. Histol. Histopathol. 30: 1233-1242.
Geissmann, F., M.G. Manz, S. Jung, M.H. Sieweke, M. Merad, & K. Ley. 2010. Development of monocytes, macrophages and dendritic cells. Science 327: 656-661. https://doi.org/10.1126/science.1178331
Gunawan, A., D. Anggrela, K. Listyarini, M.A. Abuzahra, Jakaria, M. Yamin, I. Inounu, & C. Sumantri. 2018. Identification of Single Nucleotide Polymorphism and Pathway Analysis of Apolipoprotein A5 (APOA5) Related to Fatty Acid Traits in Indonesian Sheep. Trop. Anim. Sci. J. 41:165-173. https://doi.org/10.5398/tasj.2018.41.3.165
Guo, R., S. Geng, H. Jiao, Z. Pan, X. Chen, & X. Jiao. 2016. Evaluation of protective efficacy of a novel inactivated Salmonella pullorum ghost vaccine against virulent challenge in chickens. Vet. Immunol. Immunopathol. 173: 27-33. https://doi.org/10.1016/j.vetimm.2016.03.015
Halbert, N.D., N.D. Cohen, N.M. Slovis, J. Faircloth, & R.J. Martens. 2006. Variations in equid SLC11A1 (NRAMP1) genes and associations with rhodococcus equi pneumonia in horses. J. Vet. Intern. Med. 20: 974-979. https://doi.org/10.1111/j.1939-1676.2006.tb01814.x
Hamida, F., K.G. Wiryawan, & A. Meryandini. 2015. Selection of lactic acid bacteria as probiotic candidate for chicken. Med. Pet. 38:138-144. https://doi.org/10.5398/medpet.2015.38.2.138
Harbison, A.M. & J.N.T. Nguyen. 2017. PCR: Identifcation of genetic polymorphisms. Methods Mol. Biol. 1606: 193-203. https://doi.org/10.1007/978-1-4939-6990-6_13
He, X.M., M.X. Fang, Z.T. Zhang, Y.S. Hu, X.Z. Jia, D.L. He, S.D. Liang, Q.H. Nie, & X.Q. Zhang. 2013. Characterization of chicken natural resistance-associated macrophage proteinencoding genes (Nramp1 and Nramp2) and association with salmonellosis resistance. Genet. Mol. Res. 12: 618-630. https://doi.org/10.4238/2013.January.30.5
Hu, Y., Y.J. Shan, C.H. Zhu, W.T. Song, W.J. Xu, W.Q. Zhu, S.J. Zhang, & H.F. Li. 2015. Up-regulation of NRAMP1 mRNA confirms its role in enhanced host immunity in post-artificial infections of Salmonella enteritidis in chicks. Br. Poult. Sci. 56: 408-415. https://doi.org/10.1080/00071668.2015.1052371
Iskandar, S. 2018. Phenotypic characterization and distributin of SenSi-1 Agrinak chicken. Wartazoa. 28:051-060. https://doi.org/10.14334/wartazoa.v28i2.1673
Jin, Y.C., P. Wei, S. Cui, & L. Huang. 2015. The relationship between the three-dimensional (3D) structures of BF molecules and MHC-related Marek’s disease resistance in chickens. Scand. J. Immunol. 81: 325-327. https://doi.org/10.1111/sji.12278
Kramer, J., M. Malek, & S.J. Lamont. 2003. Association of twelve candidate gene polymorphisms and response to challenge with Salmonella enteritidis in poultry. Anim. Genet. 34: 339-348. https://doi.org/10.1046/j.1365-2052.2003.01027.x
Lamont, S.J., W. Liu, & M. Kaiser. 2002. Natural resistance associated macrophage protein 1 gene polymorphisms and response to vaccine against or challenge with Salmonella enteritidis in young chicks. Poult. Sci. 82: 259-266. https://doi.org/10.1093/ps/82.2.259
Lantier, I., C.R. Moreno, P. Berthon, G. Sallé, F. Pitel, L. Schibler, A.V. Gautier-Bouchardon, R. Boivin, J.L. Weisbecker, & D. François. 2012. Quantitative trait loci for resistance to infection in sheep using a live Salmonella abortusovis vaccine. Anim. Genet. 43: 632-635. https://doi.org/10.1111/j.1365-2052.2011.02291.x
Li, P., H. Wang, X. Zhao, Z. Gou, R. Liu, Y. Song, Q. Li, M. Zheng, H. Cui, N. Everaert, G. Zhao, & J. Wen. 2017. Allelic variation in TLR4 is linked to resistance to Salmonella enteritidis infection in chickens. Poult. Sci. 96: 2040-2048. https://doi.org/10.3382/ps/pex010
Liu, L., X.W. Zhao, Y.M. Song, Q.H. Li, P. Li, R.R. Liu, M.Q. Zheng, J. Wen, & G.P. Zhao. 2016. Difference in resistance to Salmonella enteritidis infection among allelic variants of TLR4 (903, 1832) in SPF chickens. J. Appl. Genet. 57: 389-396. https://doi.org/10.1007/s13353-015-0324-3
Machado, M.A., I. Schuster, M.L. Martinez, & A.L. Campos. 2003. Genetic diversity of four cattle breed using microsatellite markers. Rev. Bras. De Zool. 32: 93-98. https://doi.org/10.1590/S1516-35982003000100012
Mahmud, H.A., H. Seo, S. Kim, M.I. Islam, K.W. Nam, H.D. Cho, & H.Y. Song. 2017. Thymoquinone (TQ) inhibits the replication of intracellular Mycobacterium tuberculosis in macrophages and modulates nitric oxide production. BMC Complement Altern. Med. 17: 279-287. https://doi.org/10.1186/s12906-017-1786-0
Malek, M. & S.J. Lamont. 2003. Association of INOS, TRAIL, TGF-b2, TGF-b3, and IgL genes with response to Salmonella enteritidis in poultry. Genet. Sel. Evol. 1: 99-111. https://doi.org/10.1186/1297-9686-35-S1-S99
Mamutse, J., A. Gunawan, C. Sumantri, S. Murtini, & T. Sartika. 2018. Association of the Toll-Like Receptor 4 (TLR4) and Myxovirus (MX) genes with resistance to Salmonella and Newcastle Disease in selected sentul chickens. Int. J. Poult. Sci. 17: 591-599. https://doi.org/10.3923/ijps.2018.591.599
McPherson, M.J. & S.G. Moller. 2006. PCR. 2nd ed. Taylor & Francis Group, New York. https://doi.org/10.4324/9780203002674
Medapati, R.V., S. Suvvari, S. Godi, & P. Gangisetti. 2017. NRAMP1 and VDR gene polymorphisms in susceptibility to pulmonary tuberculosis among Andhra Pradesh population in India: a case-control study. BMC Pulm. Med. 17: 89-95. https://doi.org/10.1186/s12890-017-0431-5
Muhsinin, M., N. Ulupi, A. Gunawan, I.W.T. Wibawan, & C. Sumantri. 2016. Association of NRAMP1 polymorphisms with immune traits in Indonesian native chickens. Int. J. Poult. Sci. 15: 401-406. https://doi.org/10.3923/ijps.2016.401.406
Nei, M. & S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.
Noor, R.R. 2010. Genetika Ternak. Penebar Swadaya, Jakarta.
Pagala, M.A. & L.O. Nafiu. 2012. Identifikasi molekuler sifat anti viral ayam Tolaki melalui deteksi gen Mx sebagai marka genetik. Agriplus. 23:139-144.
Pecoraro, H.L., B. Thompson, & G.E. Duhamel. 2017. Histopathology case definition of naturally acquired Salmonella enterica serovar Dublin infection in young Holstein cattle in the northeastern United States. J. Vet. Diagn. Invest. 29: 860-864. https://doi.org/10.1177/1040638717712757
Pereira-Suárez, A.L., C. Estrada-Chávez, C. Arriaga-Díaz, P. Espinosa-Cueto, & R. Mancilla. 2006. Coexpression of NRAMP1, iNOS, and nitrotyrosine in bovine tuberculosis. Vet. Pathol. 43: 709-717. https://doi.org/10.1354/vp.43-5-709
Psifidi, A., G. Banos, O. Matika, T.T. Desta, J. Bettridge, D.A. Hume, T. Dessie, R. Christley, P. Wigley, O. Hanotte, & P. Kaiser. 2016. Genome-wide association studies of immune, disease and production traits in indigenous chicken ecotypes. Genet. Sel. Evol. 48: 74-90. https://doi.org/10.1186/s12711-016-0252-7
Ramasamy, K.T., M.R. Reddy, & S. Murugesan. 2011. Toll-like receptor mRNA expression, INOS gene polymorphism and serum nitric oxide levels in indigenous chickens. Vet. Res. Commun. 35: 321-327. https://doi.org/10.1007/s11259-011-9472-z
Reventun, P., M. Alique, I. Cuadrado, S. Marquez, R. Toro, C. Zaragoza, & M. Saura. 2017. iNOS-Derived nitric oxide induces integrin-linked kinase endocytic lysosome-mediated degradation in the vascular endothelium. Arterioscler Thromb Vasc. Biol. 37: 1272-1281. https://doi.org/10.1161/ATVBAHA.117.309560
Ryan, K.J. & C.G. Ray. 2014. Sherris Medical Microbiology. 6th ed. McGraw Hill, New York.
Sambrook, J., E.F. Fritsch, & T. Maniatis. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY.
Serbina, N.V., T. Jia, T.M. Hohl, & E.G. Pamer. 2008. Monocyte-Mediated Defense against Microbial Pathogens. Annu. Rev. Immunol. 26:421. [PubMed: 18303997]. https://doi.org/10.1146/annurev.immunol.26.021607.090326
Sun, X., S. Li, Y. He, H. Zhao, Y. Wang, X. Zeng, & M. Xing. 2017. Arsenic-induced testicular toxicity in Gallus gallus: Expressions of inflammatory cytokines and heat shock proteins. Poult. Sci. 96:3399-3406. https://doi.org/10.3382/ps/pex073
Sundaresan, N.R., K.A. Ahmed, V.K. Saxena, K.V. Sastry, M. Saxena, A.B. Pramod, M. Nath, K.B. Singh, T.J. Rasool, A.K. DevRoy, & R.V. Singh. 2005. Differential expression of inducible nitric oxide synthase and cytokine mRNA in chicken lines divergent for cutaneous hypersensitivity response. Vet. Immunol. Immunopathol. 108: 373-385. https://doi.org/10.1016/j.vetimm.2005.06.011
Tambasco, D.D., C.C.P. Paz, M. Tambasco-Studart, A.P. Pereira, M.M. Alencar, A.R. Freitas, L.L. Coutinho, I.U. Packer, & C.A. Regitano. 2003. Candidate genes for growth traits in beef cattle crosses Bos taurus x Bos indicus. J. Anim. Breed Genet. 120: 51-56. https://doi.org/10.1046/j.1439-0388.2003.00371.x
Togashi, K. & C.Y. Lin. 2010. Theoretical efficiency of multiple-trait quantitative trait loci-assisted selection. J. Anim. Breed Genet.127: 53-63. https://doi.org/10.1111/j.1439-0388.2009.00817.x
Tohidi, R., I. Idris, J.M. Panandam, & M.H. Bejo. 2012. The effects of polymorphisms in IL-2, IFN-γ, TGF-β2, IgL, TLR-4, MD-2, and iNOS genes on resistance to Salmonella enteritidis in indigenous chickens. Avian Pathol. 41: 605-612. https://doi.org/10.1080/03079457.2012.739680
Tohidi, R., I.B. Idris, J.M. Panandam, & M.H. Bejo. 2013. The effects of polymorphisms in 7 candidate genes on resistance to Salmonella enteritidis in native chickens. Poult. Sci. 92: 900-909. https://doi.org/10.3382/ps.2012-02797
Ulupi, N., Muladno, C. Sumantri, & I.W.T. Wibawan. 2013. Association of TLR4 gene genotype and resistance against Salmonella enteritidis natural infection in kampung chicken. Int. J. Poult. Sci. 12: 445-450. https://doi.org/10.3923/ijps.2013.445.450
Ulupi, N., Muladno, C. Sumantri, & I.W.T. Wibawan. 2014. Study of kampung chicken resistance against Salmonella enteritidis using TLR4 gene as marker. Int. J. Poult. Sci. 13: 467-472. https://doi.org/10.3923/ijps.2014.467.472
Ulupi, N., Muladno, C. Sumantri, & I.W.T. Wibawan. 2014. Identifikasi keragaman gen Toll-Like Receptor-4 ayam lokal dengan polymerase chain reaction- restriction fragment lenght polymorphism. Jurnal Veterin. 15: 345-352.
Velge, P., A. Cloeckaert, & P. Barrow. 2005. Emergence of Salmonella epidemics : the problems related to Salmonella enterica serotype enteritidis and multiple antibiotic resistance in other major serotypes. Vet. Res. 36:267-288. https://doi.org/10.1051/vetres:2005005
Viljoen, G.J., L.H. Nel, & J.R. Crowther. 2005. Molecular Diagnosis PCR Handbook. Springer, Netherlands.
Webster, R., N. Cox, & K. Stohr. 2002. WHO Manual on Animal Influenza Diagnosis and Surveillance.
Wibawan, I.W.T. & R.D. Soedjono. 2013. Intisari Imunologi Medis. Fakultas Kedokteran Hewan Institut Pertanian Bogor, Bogor
Wils-Plotz, E.L. & K.C. Klasing. 2016. Effects of immunomodulatory nutrients on growth performance and immune-related gene expression in layer chicks challenged with lipopolysaccharide. Poult. Sci. 96: 548-555. https://doi.org/10.3382/ps/pew376
Yan, M., M. Hou, J. Liu, S. Zhang, B. Liu, X. Wu, & G. Liu. 2017. Regulation of INOS-Derived ROS generation by HSP90 and Cav-1 in porcine reproductive and respiratory syndrome virus-infected swine lung injury. Inflammation 40: 1236-1244. https://doi.org/10.1007/s10753-017-0566-9
Yuniwarti, E.Y.W., W. Asmara, W.T. Artama, & C.R. Tabbu. 2013. Virgin coconut oil meningkatkan aktivitas fagositosis makrofag ayam pedaging pasca vaksinasi flu burung. J. Vet. 14: 190-196.
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.