Morphological Characteristics and Productivity of Guinea Grass (Panicum maximum CV Purple Guinea) Irradiated with Gamma-Ray
Abstract
References
Ahmed, S. 2017. Impact of gamma radiations on wheat (Triticum aestivum L.) varieties (Batoor and Janbaz). Pure Appl. Biol. 6: 218-225. https://doi.org/10.19045/bspab.2017.60017
Akram, S., B.M.N. Hussain, M.A. Al Bari, J. D. Burritt, & M.H.A. Hossain. 2016. Genetic variability and association analysis of soybean (Glycine max (l.) merrill) for yield and yield attributing traits. Plant Gene Trait. 7: 1-11. https://doi.org/10.5376/pgt.2016.07.0013
Alikamanoglu, S., O. Yaycili, & A. Sen. 2011. Effect of gamma irradiationon growth factors, biochemical parameters, and accumulation of trace elements in soybean plants (Glycine max L. Merrill). Biol. Trace Elem. Res. 141: 283–293. https://doi.org/10.1007/s12011-010-8709-y
Ambavane, A.R., S.V. Sawardekar, S.A. Sawantdesai, & N.B. Gokhale. 2015. Studies on mutagenic effectiveness and efficiency of gamma rays and its effect on quantitative traits in finger millet (Eleusine coracana L. Gaertn). J. Radiat. Res. Appl. Sci. 8: 120–125. https://doi.org/10.1016/j.jrras.2014.12.004
Amin, R., M. R. Wani, A. Raina, S. Khursheed, & S. Khan. 2019. Induced morphological and chromosomal diversity in the mutagenized population of Black Cumin (Nigella sativa L.) using single and combination treatments of gamma rays and ethyl methane sulfonate. Jordan J. Biol. Sci. 12: 23-30
Amir, K., S. Hussain, M. Shuaib, F. Hussain, Z. Urooj, W.M. Khan, U. Zeb, K. Ali, M.A. Zeb, & F. Hussain. 2018. Effect of gamma irradiation on OKRA (Abelmoschus esculentus L.). Acta Ecol. Sin. 38: 368–373. https://doi.org/10.1016/j.chnaes.2018.02.002
Amri-Tiliouine, W., M. Laouar, A. Abdelguerfi, J. Jankowicz-Cieslak, L. Jankuloski, & B.J. Till. 2018. Genetic variability induced by gamma rays and preliminary results of low-cost TILLING on M2 generation of Chickpea (Cicer arietinum L.). Front. Plant Sci. 9: 1-15. https://doi.org/10.3389/fpls.2018.01568
Anand, Y. & S.T. Kajjidoni. 2014. Genetic enhancement of grain size and other productivity related traits through induced variability in kharif sorghum. Karnataka J. Agric. Sci. 27: 121-124
Asadi. 2013. Pemuliaan mutasi untuk perbaikan terhadap umur dan produktivitas pada kedelai. Jurnal Agro Biogen. 9:135-142. https://doi.org/10.21082/jbio.v9n3.2013.p135-142
Badr, A., H.H. El-Shazly, & M. Halawa. 2014. Cytological effects of gamma irradiationand its impact on growth and yield of M1 and M2 plants of cowpea cultivars. Cytologia 79: 195–206. https://doi.org/10.1508/cytologia.79.195
Chaudhuri, S.K. 2002. A simple and reliable method to detect gamma-irradiated lentil (Lens culinaris Medik.) seeds by germination efficiency and seedling growth test. Radiat. Phys. Chem. 64: 131–136. https://doi.org/10.1016/S0969-806X(01)00467-4
Chen, J., C. Thammina, W. Li, H. Yu, H. Yer, R. El-Tanbouly, M. Marron, L. Katin-Grazzini, Y. Chen, J. Inguagiato, R.J. McAvoy, K. Guillard, X. Zhang, & Y. Li. 2016. Isolation of prostrate turfgrass mutants via screening of dwarf phenotype and characterization of a perennial ryegrass prostrate mutant. Hortic. Res. 3:1-6. https://doi.org/10.1038/hortres.2016.3
Dhole, V. J. & K. S. Reddy. 2018. Genetic analysis and variability studies in mutants induced through electron beam and gamma rays in mungbean (Vigna radiata L. Wilczek). Journal of Plant Breeding 1: 304-312. https://doi.org/10.5958/0975-928X.2018.00035.2
Eroglu, Y., H.E. Eroglu, & A.I. Ilbas. 2007. Gamma ray reduces mitotic index in embryonic roots of Hordeum vulgare L. Adv. Biol. Res. 1: 26-28.
Fanindi, A., S.H. Sutjahjo, S.I. Aisyah, & N.D. Purwantari. 2016. Characteristic morphology and genetic variability of Guinea grass (Panicum maximum cv Purple Guinea) through gamma ray irradiated on acid land. JITV. 21: 205-214. https://doi.org/10.14334/jitv.v21i4.1635
Guedea, M., A. Castel, M. Arnalte, A. Mollera,V. Mu˜ no, & F. Guedead. 2013. Single high-dose vs. fractionated radiotherapy: Effects on plant growth rates. Rep. Pract. Oncol. Radiother. 18: 279–285. https://doi.org/10.1016/j.rpor.2013.07.012
Hanafy, R. S. & S. A. Akladious. 2018. Physiological and molecular studies on the effect of gamma radiation in fenugreek (Trigonella foenum-graecum L.) plants. J. Genet. Eng. Biotechnol. 16: 683–692. https://doi.org/10.1016/j.jgeb.2018.02.012
Hare, M.D., S. Phengphet, T. Songsiri, N. Sutin, & E. Stern. 2013. Effect of cutting interval on yield and quality of two Panicum maximum cultivars in Thailand. Tropical Grasslands – Forrajes Tropicales. 1: 87−89. https://doi.org/10.17138/TGFT(1)87-89
Hanafiah, D.S., Trikoesoemaningtyas, S. Yahya, & D. Wirnas. 2010. Studi radiosensitivitas kedelai (Glycine Max (L) Merr) varietas argomulyo melalui irradiasi sinar gamma. Bionatura-Jurnal Ilmu-ilmu Hayati dan Fisik. 12: 103-109
Islam, M., S. Raffi, M. Hossain, & A. Hasan. 2015. Analysis of genetic variability, heritability and genetic advance for yield and yield associated traits in some promising advanced lines of rice. Progress. Agric. 26:26-31. https://doi.org/10.3329/pa.v26i1.24511
Jan, S., T. Parween, T. O. Siddiqi, & Mahmooduzzafar. 2011. Gamma radiation effects on growth and yield attributes of Psoralea corylifolia L. with reference to enhanced production of psoralen. Plant Growth Regul. 64:163–171. https://doi.org/10.1007/s10725-010-9552-z
Jank, L., J.A. Martuscello, R.M.S. Resende, & C.B. Valle. 2010. Panicummaximum Jacq. In Fonseca DM and Martuscello JA (eds.) Plantas Forrageiras. Editora UFV, Viçosa, pp. 166-194.
Kalton, R.R., A.G. Smit, & R.C. Leffel. 1952. Breeding Perennial Forage Grasses. In Hanson, A.A. & H.L. Carnahan. Technical Bulletin 1145. United States Department of Agriculture. pp 121
Khan, W.M. 2018. Gamma irradiationinduced mutation in M2 population of Pea (Pisum sativum L.). Pure Appl. Biol. 7:832-839. https://doi.org/10.19045/bspab.2018.700102
Khan, W.M., S. Z. Shah, L. Shah, M. S. Khan, Z. Muhammad, I. Ahmad, M. Anwar, & S. Ali. 2015 Effect of gamma radiation on some morphological and biochemical characteristics of Brassica napus L. (variety Bulbul 98). Pure Appl. Biol. 4: 236-243. https://doi.org/10.19045/bspab.2015.42012
Kim, J.B., S.H. Kim, B.-K. Ha, S.-Y. Kang, C.S. Jang, Y.W. Seo, & D.S Kim. 2014. Differentially expressed genes in response to gamma-irirradiationduring the vegetative stage in Arabidopsis thaliana. Mol. Biol. Rep. 41: 2229–2241. https://doi.org/10.1007/s11033-014-3074-0
Kitano, S., A. Miyagi, Y. Oono, Y. Hase, I. Narumi, M. Yamaguchi, H. Uchimiya, & M. Kawai-Yamada. 2015. Metabolic alterations in leaves of oxalate-rich plant Rumex obtusifolius L. irradiated by gamma rays. Metabolomics 11: 134–142. https://doi.org/10.1007/s11306-014-0684-4
Laskar, R.A. & S. Khan. 2017. Assessment on induced genetic variability and divergence in the mutagenized lentil populations of microsperma and macrosperma cultivars developed using physical and chemical mutagenesis. PLOS ONE 12: e0184598. https://doi.org/10.1371/journal.pone.0184598
Le, K.-C., T.-T Ho, K.-Y Paek, & S.-Y Park. 2019. Low dose gamma radiation increases the biomass and ginsenoside content of callus and adventitious root cultures of wild ginseng (Panax ginseng Mayer). Ind. Crops Prod. 130: 16–24. https://doi.org/10.1016/j.indcrop.2018.12.056
Marcu, D., G. Damian, C. Cosma, & V. Cristea. 2013. Gamma irradiationeffects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). J. Biol. Phys. 39: 625–634. https://doi.org/10.1007/s10867-013-9322-z
Moedjiono & M.J. Mejaya. 1994. Variabilitas genetik beberapa karakter plasma nutfah jagung koleksi Balittan Malang. Zuriat: 5: 27-32
Mohajer, S., R. Mat Taha, M.M. Lay, A. K. Esmaeili, & M. Khalili. 2014. Stimulatory effects of gamma irradiation on phytochemical properties, mitotic behaviour, and nutritional composition of Sainfoin (Onobrychis viciifolia Scop.). The Scientific World Journal 2014: 1–9. https://doi.org/10.1155/2014/854093
Muhammad, M.L., A.O. Falusi, M.O. Adebola, O.D. Oyedum, A.A. Gado, & M.C. Dang. 2018. Spectrum and frequency of mutations induced by gamma radiations in three varieties of Nigerian Sesame (Sesamum indicum L.). Not. Sci. Biol. 10: 87. https://doi.org/10.15835/nsb10110219
Mutlu, S.S., H. Djapo, S.F. Ozmen, C. Selim, & N. Tuncel. 2015. Gamma-ray Irirradiationinduces useful morphological variation in Bermudagrass. Not. Bot. Horti. Agrobo. 43:515-520. https://doi.org/10.15835/nbha.43.2.9762
Parman, T., M.J. Wiley, & P.G. Wells. 1999. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat. Med. 5: 582–585. https://doi.org/10.1038/8466
Respati, A.N., N. Umami, & C. Hanim. 2018. Growth and production of Brachiaria brizantha cv. MG5 in three difference regrowth phase treated by gamma radiation dose. Trop. Anim. Sci. J. 41: 179–184. https://doi.org/10.5398/tasj.2018.41.3.179
Saha, S. & A. Paul. 2019. Radiation induced mutagen sensitivity and chlorophyll mutation frequency on sesame seeds. Journal of Environmental Biology 40: 252–257. https://doi.org/10.22438/jeb/40/2/MRN-726
Santoso, B. & B.Tj. Hariadi. 2008. Komposisi kimia, degradasi nutrien dan produksi gas metana in vitro rumput tropik yang diawetkan dengan metode silase dan hay. Med. Pet. 31:128-137
Singh, B. D. 2005. Mutations in Crop Improvement. In: Singh, B. D. (ed). Plant Breeding, Principles and Methods. Kalyani Publishers, Ludhiana. pp. 698–731.
Singh, R.K. & B.D. Chaundhary. 1977. Biometrical Methods in Quantitative Genetics Analysis. Kalyani Publishers, New Delhi.
Sobrizal. 2016. Potensi pemuliaan mutasi untuk perbaikan varietas padi lokal indonesia. Jurnal Ilmiah Aplikasi Isotop dan Radiasi 12: 23-35. https://doi.org/10.17146/jair.2016.12.1.3198
Sri Devi, A. & L. Mullainathan. 2012. Effect of gamma rays and ethyl methane sulphonate (EMS) in M3 generation of blackgram (Vigna mungo L. Hepper). Afr. J. Biotechnol. 11: 3548-3252.https://doi.org/10.5897/AJB10.1773
Tabti, D., M. Laouar, K. Rajendran, S. Kumar, & A. Abdelguerfi. 2018. Identification of desirable mutants in quantitative traits of lentil at early (M2) population. J. Environ. Biol. 39:137–142. https://doi.org/10.22438/jeb/39/2/MRN-476
Tah, P.R. 2006. Studies on gamma ray induced mutations in Mungbean [Vigna radiata (L.) Wilczek]. Asian Journal of Plant Science 5:61-70. https://doi.org/10.3923/ajps.2006.61.70
Taheri, S., T.L. Abdullah, Z. Ahmad, & N.A.P. Abdullah. 2014. effect of acute gamma irirradiationonCurcuma alismatifoliavarieties and detection of DNA polymorphism through SSR marker. BioMed Res. 1–18. https://doi.org/10.1155/2014/631813
Ukanwoko, A.I. & N.C. Igwe. 2012. Proximate composition of some grass and legume silages prepared in a humid tropical environment. International Research Journal of Agricultural Science and Soil Science. 2: 068-071
Ulukapi, K. & S.F. Ozmen. 2018. Study of the effect of irirradiation (60 Co) on M 1 plants of common bean (Phaseolus vulgaris L.) cultivars and determined of proper doses for mutation breeding. J. Radiat. Res. Appl. Sci. 11: 157–161. https://doi.org/10.1016/j.jrras.2017.12.004
Umeshkumar, V., B.G. Sanjeev, & K. Madhusudan. 2015. Mutagenic effect of gamma rays on quantitative traits and grain micronutrients in Finger Millet (Eleusine coracana (L.) Gaertn). Trends in Biosciences. 21: 5884-5887
Vicente-Chandler, J. 2001. Intensive Management of Forage Grasses in the Humidtropics. In: A. Sotomoyor-Rios and W.D. Pitman (Eds). Tropical Forage Plants: Development and Use. CRC Press, Boca Ratoon, London. https://doi.org/10.1201/9781420038781.ch10
Walther, F. & A. Sauer. 1990. Influence of acute and fractionated X-ray doses on shoot production of invitro derived explants of Gerbera jamesnii H. Bolus. Plant Breed. 105:137-143. https://doi.org/10.1111/j.1439-0523.1990.tb00466.x
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.