Performance and Carcass Characteristics of Broiler Chickens Fed Various Components of Candlenut Kernel
Abstract
References
AOAC. 1984. Official Methods of Analysis. Association of Official Analytical Chemists. 14th ed. Assoc. Off. Anal. Chem., Arlington.
Al-Khalifa, H., D. I. Givens, C. Rymer, & P. Yaqoob. 2012. Effect of n-3 fatty acids on immune function in broiler chickens. Poult. Sci. 91:74-88. https://doi.org/10.3382/ps.2011-01693
Bostami, A. B. M. R., H. S. Mun, & C-J. Yang. 2017. Breast and thigh meat chemical composition in fatty acid profile in broilers fed diet with dietary fat sources. J. Food Process Technol. 8: 672. https://doi.org/10.4172/2157-7110.1000672
Carrillo, S., F. Lopez, M. M. Casas, E. Avila, R. M. Castillo, M. E. Carronco, C. Calco, & F. Perez-Gil. 2008. Potential use of seaweeds in the laying hen ration to improve the quality of n-3 fatty acid enriched eggs. J. Appl. Phycology. 20:271-278. https://doi.org/10.1007/s10811-008-9334-4
Covacevich, J., P. Davie, & J. Pearn. 1987. Toxic Plants and Animals: A Guide for Australia. Queensland Museum, Brisbane. Pp. 369-389.
del Puerto, M., M. C. Cabrera, & S. Ali. 2017. A note on fatty acids profile of meat from broiler chickens supplemented with inorganic or organic selenium. Int. J. Food Sci. Vol. 2017, Article ID 7613069. https://doi.org/10.1155/2017/7613069
Ebrahimi, M., M. A. Rajion, & Y. M. Goh. 2014. Effects of oils rich in linoleic and α-linolenic acids on fatty acid profile and gene expression in goat meat. Nutrients. 6:3913-3928. https://doi.org/10.3390/nu6093913
Faria, P. B., M. C. Bressan, X. R. D. Souza, L. V. Rossato, L. M. G. Botego, & L. T. D. Gama. 2010. Carcass and part yield of broilers reared under a semi-extensive system. Brazilian J. Poult. Sci. 12: 153-159. https://doi.org/10.1590/S1516-635X2010000300003
Freitas, H. B. D., K. M. R. D. S. Nascimento, C. Kiefer, G. A. Gomes, T. T. D. Santos, E. R. M. Garcia, T. R. D. Silva, L. L. Paiva, & P. R. Berno. 2019. Graded levels of phytase on performance, bone mineralization and carcass traits of broiler fed reduced dicalcium phosphate. Asian-Australas. J. Anim. Sci. 32: 691-700. https://doi.org/10.5713/ajas.18.0228
Hashemi, S. M., T. C. Loh, H. L. Foo, I. Zulkifli, & M Hair-Bejo. 2014. Dietary putrescine effects on performance parameters, nutrient digestibility, intestinal morphology and tissue polyamine content of broilers fed low protein diet. Iran. J. Vet. Res. 15:385-391.
Kanakri, K., J. Carragher, R. Hughes, B. Muhlhausler, & R. Gibson. 2018. The effect of different dietary fats on the fatty acid composition of several tissues in broiler chickens. Eur. J. Lipid Sci. Technol. 120:1-13. https://doi.org/10.1002/ejlt.201700237
Koreleski, J. & S. Swiatkiewicz. 2007. Dietary supplementation with plant extracts, xantophylls and synthetic antioxidants: Effect of fatty acid profile and oxidative stability of frozen stored chicken breast meat. J. Anim. Feed Sci. 16:463-471.
Leke, J. R., J. S. Mandey, J. T. Laihad, R. M. Tinangon, L. Tangkau, & C. Junus. 2018. Performance and lipid profiles of native chickens fed diet containing skipjack fish oil as by-product of fish canning factory. IOP Conf. Ser.: Earth Environ. Sci. 102 012041. https://doi.org/10.1088/1755-1315/102/1/012041
Lee, J. Y., G. G. Han, H-B. Lee, S-M. Lee, S-K. Kang, G-D. Jin, J. Park, B. J. Chae, Y. H. Choi, E. B. Kim, & Y-J. Choi. 2017. Prohibition of antibiotic growth promoters has affected the genomics profiles of Lactobacillus salivarius inhabiting the swine intestine. PLOS ONE 12:e0186671. https://doi.org/10.1371/journal.pone.0186671
Martin, C., A. Moure, G. Martin, E. Carrillo, H. Dominquez, & J. C. Parajo. 2010. Fractional characterization of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstock for biodiesel production in Cuba. Biosmass and Bioenergy 34:553-538. https://doi.org/10.1016/j.biombioe.2009.12.019
Morales-Barrera, J. E., M. J. Gonzalez-Alcorta, R. M. Castillo-Dominguez , O. F. Prado-Rebolledo, X. Hernandez-Velasco, A. Menconi, G. Tellez, B. M. Hargis, & S. Carrillo-Dominguez. 2013. Fatty acid deposition on broiler meat in chickens supplemented with tuna oil. Food Nutr. Sci. 4:16-20. https://doi.org/10.4236/fns.2013.49A1003
Mpala, L. N., G. R. Chikowe, & I. E. Cock. 2017. Aleurites moluccanus (l.) Willd. extracts inhibit the growth of bacterial triggers of selected autoimmune inflammatory diseases. Pharmacogn. Commn. 7:83-90. https://doi.org/10.5530/pc.2017.2.12
Mridula, D., D. Kaur, S. S. Nagra, P. Barnwal, S. Gurumayum, & K. K. Singh. 2012. Effect of dietary flaxseed supplementation on egg production and quality in laying hens. Indian J. Poult. Sci. 40:40-47.
NRC (National Research Council). 1994. Nutrient Requirement of Poultry. 9th rev. ed. National Academy Press, Washington, DC.
Nwosu, J. N., C. N. Ubbaonu, E. O. I. Banigo, & A. Uzomah. 2010. The effects of processing on the anti-nutritional properties of ‘oze’ (Bosquiea angolensis) seeds. New York Sci J. 3:106-111.
Poorghasemi, M., A. Seidavi, A. A. A. Qotbi, V. Laudadio, & V. Tufarelli. 2013. Influence of dietary fat source on growth performance responses and carcass traits of broiler chicks. Asian-Australas. J. Anim. Sci. 26:705-710. https://doi.org/10.5713/ajas.2012.12633
Reyes, F. C. C., A. T. A. Aguirre, E. M. Agbisit Jr, F. E. Merca, G. L. Manulat, & A. A. Angeles. 2018. Growth performances and carcass characteristics of broiler chickens fed akasya [Samanea Saman (Jacq.) Merr.] pod meal. Tropical Anim. Sci. 41: 46-52. https://doi.org/10.5398/tasj.2018.41.1.46
Rohaida, A. R., A. R. Alimon, & A. Q. Sazili. 2014. Fatty acid composition of breast and thigh muscles of broiler fed diets supplemented with candlenut kernel meal subjected to different heat treatments. Malaysian J. Anim. Sci. 17:47-60.
Tang, S. C., I. Zulkifli, M. Ebrahimi, A. R. Alimon, A. F. Soleimani, & K. Filer. 2011. Effects of feeding different levels of corn dried distillers grains with soluble on growth performance, carcass yield and meat fatty acid composition in broiler chickens. Int. J. Anim. Vet. Advances. 3:205-211.
Tohid, V., N-A. Kambiz, E-N. Yahya, M-S. Naser, & V. Sina. 2008. The effects of energy increasing and protein lowering by addition on fats to diet on broiler chickens: Performance and Serum Lipids. Asian J. Anim. Advances. 3: 286-292. https://doi.org/10.3923/ajava.2008.286.292
Trembecka, L., P. Hascik, J. Cubon, M. Bobko & A. Pavelkova. 2016. Fatty acids profile of breast and thigh muscles of broiler chickens fed diets with propolis and probiotics. J. Central European Agri. 17: 1179-1193. https://doi.org/10.5513/JCEA01/17.4.1828
Walter, A. & C. Sam. 2002. Fruits of Oceania. ACIAR Monograph 85. Australian Center for Agricultural Research. Canberra, Australia.
Woods, V. B. & A. M. Fearon. 2009. Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs: A review. Livestock Sci. 126:1-20. https://doi.org/10.1016/j.livsci.2009.07.002
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.