Prediction of In Situ Ruminal Degradability of Forages in Buffaloes Using the In Vitro Gas Production Technique

G. F. Guadayo, A. A. Rayos, F. E. Merca, A. G. Tandang, M. M. Loresco, A. A. Angeles

Abstract

Two experiments, namely the situ nylon bag technique and the in vitro gas production technique, were carried out to determine the correlations between the in situ ruminal degradability and the in vitro gas production of different forages, and to predict the ruminal degradability of the forages using the gas production parameters. Forage samples from Napier grass (Pennisetum purpureum), Guinea grass (Panicum maximum), Para grass (Brachiaria mutica), Leucaena (Leucaena leucocephala), Rain tree (Samanea saman), and Gliricidia (Gliricidia sepium) were incubated in the rumen of three rumen-cannulated buffaloes using the in situ nylon bag technique for 3, 6, 12, 24, 48, and 72 h. The six forage samples were also subjected to the in vitro gas production analysis following the modified methods developed by Menke & Steingass (1988), along with 30 other commonly used forages in the Philippines. Both experiments followed a randomized complete block design. Their dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and crude protein (CP) degradation kinetics and effective degradability (ED) as well as the gas production parameters were then estimated. Results revealed that the ED of each nutrient was found to be moderately to strongly correlated with some of the gas production times and estimated gas parameters. The predictor models generated using the gas production parameters for the ED of DM, OM, and NDF were sufficiently strong (R2= 0.740, p value= 0.0002; R2= 0.659, p value= 0.0009; and R2= 0.813, p value < 0.0001, respectively) while that of CP was only moderate (R2= 0.500, p value= 0.0055). It was concluded that the relationship between the two techniques is sufficiently strong and therefore the gas production parameters can be used to predict the in situ ruminal nutrient degradability of forages.

References

Ahmed, M. A., S. Jusoh, A. R. Alimon, M. Ebrahimi, & A. A. Samsudin. 2018. Nutritive and anti-nutritive evaluation of Kleinhovia hospita, Leucaena leucocephala and Gliricidia sepium with respect to their effects on in vitro rumen fermentation and gas production. Trop. Anim. Sci. J. 41:128-136. https://doi.org/10.5398/tasj.2018.41.2.128

Anantasook, N., M. Wanapat, & A. Cherdthong. 2014. Manipulation of ruminal fermentation and methane production by supplementation of rain tree pod meal containing tannins and saponins in growing dairy steers. J. Anim. Physiol. Anim. Nutr. 98:50-55. https://doi.org/10.1111/jpn.12029

AOAC. 2016. Official Methods of Analysis of AOAC International. 22nd Edition. AOAC International.

Cone, J. W., M. A. M. Rodrigues, C. M. Guedes, & M. C. Blok. 2009. Comparison of protein fermentation characteristics in rumen fluid determined with the gas production technique and the nylon bag technique. Anim. Feed Sci. Technol. 153:28-38. https://doi.org/10.1016/j.anifeedsci.2009.05.008

Corrêa, D. S., R. T. Magalhães, & D. C. B. Siqueira. 2014. Ruminal dry matter and fiber fraction degradability from two stylos cultivars. Arq. Bras. Med. Vet. Zootec. 66:1155-1162. https://doi.org/10.1590/1678-6508

Delgado, D. C., R. Hera, J. Cairo, & Y. Orta. 2014. Samanea saman, a multi-purpose tree with potentialities as alternative feed for animals of productive interest. Cuban J. of Agr. Sci. 48:205-212.

Edmunds, B., K. Südekum, H. Spiekers, & F. Schwarz. 2012. Estimating ruminal crude protein degradation of forages using in situ and in vitro techniques. Animal Feed Science and Technology. 175:95-105. https://doi.org/10.1016/j.anifeedsci.2012.04.003

Foroughbakhch, P. R., A. C. Parra, A. R. Estrada, M. A. A. Vazquez, & M. L. C. Avila. 2012. Nutrient content and in vitro dry matter digestibility of Gliricidia sepium (Jacq.) Walp. and Leucaena leucocephala (Lam. De Wit.). J. Anim. Vet. Adv. 11:1708-1712. https://doi.org/10.3923/javaa.2012.1708.1712

Kamalak, A., O. Canbolat, Y. Gurbuz, & O. Ozay. 2005. Comparison of in vitro gas production technique with in situ nylon bag technique to estimate dry matter degradation. Czech J. Anim. Sci. 50:60–67. https://doi.org/10.17221/3996-CJAS

Karlsson, L., M. Hetta, P. Udén, & K. Martinsson. 2009. New methodology for estimating rumen protein degradation using the in vitro gas production technique. Anim. Feed Sci. Technol. 153:193-202. https://doi.org/10.1016/j.anifeedsci.2009.06.010

Kisworo, A. N., A. Agus, Kustantinah, & B. Suwignyo. 2017. Physicochemical characteristics, in vitro fermentation indicators, gas production kinetics, and degradability of solid herbal waste as alternative feed source for ruminants. Med. Pet. 40:101-110. https://doi.org/10.5398/medpet.2017.40.2.101

Liong, Y. Y., R. Halis, & R. Mohamed. 2013. Chemical characterization of Imperata cylindrica (‘Lalang’) and Pennisetum purpureum (Napier grass) for bioethanol production in Malaysia. Pertanika J. Trop. Agric. Sci. 36:109-116.

McDonald, P., J. F. Greenhalgh, C. A. Morgan, R. Edwards, L. Sinclair, & R. Wilkinson. 2010. Animal Nutrition. 7th Edition. Pearson Canada.

McNabb, W. C., C. C. Waghorn, J. C. Peters, & T. N. Barry. 1996. The effect of condensed tannins in Lotus pendunculatus on the solubilization and degradation of ribulose-1,5-biphosphate carboxylase (EC 4.1.1.139; Rubisco) protein in the rumen and site of Rubisco digestion. Br. J. Nutr. 76:535-549. https://doi.org/10.1079/BJN19960061

Mehrez, A. Z. & E. R. Ørskov. 1977. A study of artificial fibre bag technique for determining the digestibility of feeds in the rumen. J. Agric. Sci. 88:645. (Abstr.)

Menke, K. H. & H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28:7-55.

Mohamed, R. & A. S. Chaudhry. 2008. Methods to study degradation of ruminant feeds. Nutr. Res. Rev. 21:68-81. https://doi.org/10.1017/S0954422408960674

Morais, M. J., C. C. Sevilla, J. T. Dizon, G. L. Manulat, E. E. C. Abes, & A. A. Angeles. 2018. Growth performance and ruminal metabolic variables of goats fed rain tree (Samanea saman) pods. Trop. Anim. Sci. J. 41:22-28. https://doi.org/10.5398/tasj.2018.41.1.22

Moreira, L. M., F. D. Leonel, R. A. Vieira, & J. C. Pereira. 2013. A new approach about the digestion of fibers by ruminants. Revista Brasileira De Saúde E Produção Animal 14:382-395. https://doi.org/10.1590/S1519-99402013000200008

Nsahlai, I. V., N. N. Umunna, & P. O. Osuji. 1999. Influence of feeding sheep on oil seed cake following the consumption of tanniferous feeds. Livest. Prod. Sci. 60:59-59. https://doi.org/10.1016/S0301-6226(99)00036-6

Niwińska, B. 2012. Digestion in Ruminants. In: C. Chang, editor, Carbohydrates-Comprehensive Studies on Glycobiology and Glycotechnology. InTech. pp. 245-258. https://doi.org/10.5772/51574

NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th Edition. USDA, Washington, DC, USA.

Ørskov, E. R., F. D. Deb Hovell, & F. Mould. 1980. The use of the nylon bag technique for the evaluation of feedstuffs. Trop. Anim. Prod. 5:195-213.

Ørskov, E. R. & I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503. (Abstr.) https://doi.org/10.1017/S0021859600063048

Ozkan, C. O. & M. Sahin. 2006. Comparison of in situ dry matter degradation with in vitro gas production of oak leaves supplemented with or without polyethylene glycol (PEG). Asian-Aust. J. Anim. Sci. 19:1120-1126. https://doi.org/10.5713/ajas.2006.1120

Paengkoun, P., S. Traiyakun, & S. Paengkoun. 2013. Intestinal digestibility of enriched-protein fodders measured by mobile bag incubated with or without pepsin-HCL and three-step techniques. S. Afr. J. Anim. Sci. 43:511-518. https://doi.org/10.4314/sajas.v43i4.8

Perez-Maldonado, R. A. & B. W. Norton. 1996. Digestion of 14C-labelled condensed tannins from Desmodium intortum in sheep and goats. Br. J. Nutr. 76:501-513. https://doi.org/10.1079/BJN19960059

Sujani, S., I. N. Pathirana, R. T. Seresinhe, & K. B. Dassanayaka. 2016. In vitro effects of exogenous fibrolytic enzymes on rumen fermentation of wild Guinea grass (Panicum maximum). Iran J. Appl. Anim. Sci. 6:303-308.

Zailan, M. Z., H. Yaakub, & S. Jusoh. 2016. In vitro digestibility and gas production characteristics of four Napier (Pennisetum purpureum) cultivars as fresh fodder. Mal. J. Anim. Sci. 19:95-106.

Authors

G. F. Guadayo
A. A. Rayos
F. E. Merca
A. G. Tandang
M. M. Loresco
A. A. Angeles
aaangeles8@up.edu.ph (Primary Contact)
Author Biographies

G. F. Guadayo, Dairy Training and Research Institute, University of the Philippines Los Baños

Ruminant Nutrition, University Research Associate I

A. A. Rayos, Institute of Animal Science, College of Agriculture and Food Science, University of the Philippines Los Baños

Animal Physiology and Veterinary Medicine, Professor 3

F. E. Merca, Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños

Biochemistry, Professor Emeritus

A. G. Tandang, Philippine Carabao Center at University of the Philippines Los Baños

Veterinary Medicine (Large Ruminants), Senior Science Research Specialist

M. M. Loresco, Dairy Training and Research Institute, University of the Philippines Los Baños

Pasture Agronomy and Dairy Production, University Researcher II

A. A. Angeles, Dairy Training and Research Institute, University of the Philippines Los Baños

Ruminant Nutrition and Rumen Biotechnology, Director
GuadayoG. F., RayosA. A., MercaF. E., TandangA. G., LorescoM. M., & AngelesA. A. (2019). Prediction of In Situ Ruminal Degradability of Forages in Buffaloes Using the In Vitro Gas Production Technique. Tropical Animal Science Journal, 42(2), 128-136. https://doi.org/10.5398/tasj.2019.42.2.128

Article Details

List of Cited By :

Crossref logo