Nutritive and Anti-Nutritive Evaluation of Kleinhovia hospita, Leucaena leucocephala and Gliricidia sepium with Respect to Their Effects on in Vitro Rumen Fermentation and Gas Production
Abstract
The nutritive and tannin content of tree forages (Kleinhovia hospita, Leucaena leucocephala, and Gliricidia sepium and their effects on in vitro rumen fermentation, digestibility and gas production were examined. Rumen fluid was obtained from three fistulated Boer goats with an average weight range of 31-32 kg fed forages. The fluid was incubated with 0.2 g of each forage at 39 °C for 48 h to determine the in vitro gas production, DM digestibility, metabolizable energy and volatile fatty acid. The proximate composition and the polyphenol composition of the forage were also evaluated. The experimental design was a completely randomized design and the treatments were K. hospita, L. leucocephala and G. sepium. The chemical composition, percentage of total polyphenol, non-tannin polyphenol, condensed tannin and hydrolysable tannin differed (P<0.05) among the forages. The K. hospita had higher (P<0.05) net gas production and in vitro dry matter digestibility compared with other forages. Similarly, K. hospita had higher (P<0.05) concentration of total volatile fatty acid and propionic acid followed by L. leucocephala and G. sepium. The molar proportion of acetic and butyric acid did not differ among the forages. The outcome of this study present K. hospita as a good potential forage to be used in ruminant diet as a result of better nutrient composition, moderate anti-nutritive value and best ivDMD in comparison with L. leucocephala and G. sepium.
References
Ahmed, M. A., K.. D. Adeyemi, M. F. Jahromi, S. Jusoh, A. R. Alimon, & A. A. Samsudin. 2017. Effects of dietary Kleinhovia hospita and Leucaena leucocephala leaves on rumen fermentation and microbial population in goats fed treated rice straw. Trop. Ani. Health Prod. 49: 1749-1756. https://doi.org/10.1007/s11250-017-1388-3
Ammar, H., S. López, & J.S. González. 2005. Assessment of the digestibility of some Mediterranean shrubs by in vitro techniques. Anim. Feed Sci. Technol. 119:323-331. https://doi.org/10.1016/j.anifeedsci.2004.12.013
AOAC. 2007. Official Methods of Analysis. Gaithersburg, MD: Association of Official Analytical Chemists.
Azevedo Junior, R. L. D., C. J. Olivo, C. M. D. Bem, P. F. Aguirre, M. P. Quatrin, M. M. D. Santos,... & T. Horst. 2012. Forage mass and the nutritive value of pastures mixed with forage peanut and red clover. R. Bras. Zootec. 41:827-834. http://dx.doi.org/10.1590/S1516-35982012000400002
Ball, D. M., M. Collins, G. D. Lacefield, N. P. Martin, D. A. Mertens, K. E. Olson,. & M. W. Wolf. 2001. Understanding forage quality. Am. Farm Bureau Fed. Publ. 1(01).
Banik, B. K., Z. Durmic, W. Erskine, P. Nichols, K. Ghamkhar, & P. Vercoe. 2013. Variability of in vitro ruminal fermentation and methanogenic potential in the pasture legume biserrula (Biserrula pelecinus L.). Crop Pasture Sci. 64:409-416. https://doi.org/10.1071/CP13073
Barman, K. 2004. Biodegradation of tanniniferous feeds and their influence on nutrient utilization and productivity of the dairy animals. Ph.D. National Dairy Research Institute (NDRI), Karnal, India.
Barry, T. N. & W. C. MCNabb. 1999. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 81:263-272. https://doi.org/10.1017/S0007114599000501
Berthiaume, R. I., C. Benchaar, A. V. Chaves, G. F. Tremblay, Y. Castonguay, A. Bertrand, G. Bélanger, Michaud, R., C. Lafrenière, T. A. McAllister, & A. F. Brito. 2010. Effects of nonstructural carbohydrate concentration in alfalfa on fermentation and microbial protein synthesis in continuous culture. J. Dairy Sci. 93:693-700. https://doi.org/10.3168/jds.2009-2399
Chanjula, P., Y. Siriwathananukul, & A. Lawpetchara. 2011. Effect of feeding rubber seed kernel and palm kernel cake in combination on nutrient utilization, rumen fermentation characteristics, and microbial populations in goats fed on Brachiaria humidicola hay-based diets. Asian-Australas J. Anim. Sci. 24:73-81. https://doi.org/10.5713/ajas.2011.10171
Cone, J. W., A. H. Van Gelder, I. A. Soliman, H. De Visser, & A.M. Van Vuuren. 1999. Different techniques to study rumen fermentation characteristics of maturing grass and grass silage. J. Dairy Sci. 82:957-966. https://doi.org/10.3168/jds.S0022-0302(99)75315-4
Dehority, B.A. 2003. Rumen Microbiology, Nottingham University Press, Nottingham
Elmenofy, E. K., M. I. Bassiouni, E. B. Belal, H. M. A. Gaafar, E. M. Abdel-Raouf, & S. A. Mahmoud. 2012. Improving the nutritive value of ensiled green rice straw 2-In vitro gas production. Nat. Sci. 10:86-91
Fievez, V., O. J. Babayemi, & D. Demeyer. 2005. Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Anim. Feed Sci. Technol. 123: 197-210. https://doi.org/10.1016/j.anifeedsci.2005.05.001
Garcia-Gonzales, R., J. S. Gonzales, & S. Lopez. 2010. Decrease of ruminal methane production in Rusitec fermenters through addition of plant material from rhubarb (Rheum spp.) and alder buckthorn (Frangula alnus). J. Dairy Sci. 93:3755-3763. https://doi.org/10.3168/jds.2010-3107.
Getachew, G., E. DePeters, & P. Robinson. 2004. In vitro gas production provides effective method for assessing ruminant feeds. Cal. Agric. 58:54-58. https://doi.org/10.3733/ca.v058n01p54
Getachew, G., H. P. S. Makkar, & K. Becker. 2000. Effect of polyethylene glycol on in vitro degradability of nitrogen and microbial protein synthesis from tannin-rich browse and herbaceous legumes. Br. J. Nutr. 84:73-83. https://doi.org/10.1017/S0007114500001252.
Hills, J. L., W. J. Wales, F. R. Dunshea, S. C. Garcia, & J. R. Roche. 2015. Invited review: An evaluation of the likely effects of individualized feeding of concentrate supplements to pasture-based dairy cows. J Dairy Sci. 98:1363-1401. https://doi.org/10.3168/jds.2014-8475
Holtshausen, L. 1., A. V. Chaves, K. A. Beauchemin, S. M. McGinn, T. A. McAllister, N. E. Odongo, P. R. Cheeke, & C. Benchaar. 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 92:2809-2821. https://doi.org/10.3168/jds.2008-1843.
Maheri-Sis, N. M, A. A. Chamani-Sadeghi, A. G. Mirza-Aghazadeh, & Abolfazl. 2008. Nutritional evaluation of kabuli and desi type chickpeas (Cicer arietinum L.) for ruminants using in vitro gas production technique. Afr. J. Biotechnol 7:2946-2951.
Mahgoub, O., I. T. Kadim, M. H. Al-Busaidi, K. Annamalai, & N. M. Al-Saqri. 2007. Effects of feeding ensiled date palm fronds and a by-product concentrate on performance and meat quality of Omani sheep. Anim. Feed Sci. Technol. 135:210-221. https://doi.org/10.1016/j.anifeedsci.2006.07.011
Makkar, H. P. S., M. Blummel, N. K. Borowy, & K. Becker. 1993. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 61:161-165. https://doi.org/10.1002/jsfa.2740610205
Mbatchou, V.C., & S. Dawda. 2013. The nutritional composition of four rice varieties grown and used in different food preparations in Kassena-Nankana district Ghana. Int J. Res. Chem. Environ. 3:308-315
Menke, K. H. & H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop. 28:7-55.
Min, B. R., G. T. Attwood, K. Reilly, W. Sun, J. S. Peters, T. N., & W. C. McNabb. 2002. Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep. Can. J. Microbiology 48:911-921. https://doi.org/10.1139/w02-087
Moore, K. J., & H. J. G. Jung. 2001. Lignin and fiber digestion. J. Range Manag. 54:420-430. https://doi.org/10.2458/azu_jrm_v54i4_moore
Moss, A. R., J. P. Jouany, & J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. Annales de zootechnie. 49: 231-253. https://doi.org/10.1051/animres:2000119
Mpairwe, D. R., E. N. Sabiiti, & J. S. Mugerwa. 1998. Effect of dried Gliricidia sepium leaf supplement on feed intake, digestibility and nitrogen retention in sheep fed dried KW4 elephant grass (Pennisetum purpureum) ad libitum. Agrofor. Syst. 41: 139-150. https://dx.doi.org/10.1023/A:1006097902270.
Muinga, R. W., H. M. Saha, M. N. Nunie, & S. Bimbuzi. 2000. The effect of herbaceous legumes and Gliricidia sepium on lactation performance of Jersey cows. Proceedings of the 2nd Scientific of the SMP and LRNP. Mombasa, 26-30.
Nahand, M. K., R. S. Doust-Nobar, N. Maheri-Sis, & A. Ghorbani. 2011. Rumen degradation of dry matter and organic matter digestibility of Cherry tree leaves in ruminant nutrition using in vitro gas production and in situ techniques. J. Am. Sci. 7:286-289.
Naumann, H. D., L. O. Tedeschi, W. E. Zeller, & N. F. Huntley. 2017. The role of condensed tannins in ruminant animal production: advances, limitations and future directions. R. Bras. Zootec. 46: 929-949. http://dx.doi.org/10.1590/s1806-92902017001200009
Njidda, A. A. & A. Nasiru. 2010. In vitro gas production and dry mater digestibility of tannin-containing forges of semi-arid region of north-eastern Nigeria. Pak. J. Nut. 9:60-66. https://doi.org/10.3923/pjn.2010.60.66
Njidda, A. A., & I. Ikhimioya. 2010. Nutritional evaluation of some semi-arid browse forages leaves as feed for goats. Europ. J. Appl. Sci. 2:108-115.
Orians, C.M. 1995. Preserving leaves for tannin and phenolic glycoside analyses: a comparison of methods using three willow taxa. J. Chem. Ecol. 21:1235-1243. https://doi.org/10.1007/BF02027558
Ørskov, E.R., & I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503. https://doi.org/10.1017/S0021859600063048
Piluzza, G., L. Sulas, & S. Bullitta. 2012. Tannins in forage plants and their role in animal husbandry and environmental sustainability: a review. J. Bri. Grassland Soc. 69:32–48. https://doi.org/10.1111/gfs.12053
Porter, N. A. 1986. Mechanisms for the autoxidation of polyunsaturated lipids. Acct. Chem. Res. 19:262-268. https://doi.org/10.1021/ar00129a001
Lunagariya, P. M., R. S. Gupta, & S. Parnerkar. 2017. In vitro evaluation of total mixed ration supplemented with exogenous fibrolytic enzymes for crossbred cows. Vet. World 10: 281-285. https://doi.org/10.14202/vetworld.2017.281-285
SAS. 2012. SAS Institute Inc., SAS Online Doc 9. 4 ed. SAS Institute Inc., Cary, NC, USA.
Sallam, S. M. A. 2005. Nutritive value assessment of the alternative feed resources by gas production and rumen fermentation in vitro. Res. J. Agric. Biolog. Sci. 1:200-209.
Sallam, S. M. A., M. E. A Nasser, A. M. El-Waziry, I. C. S. Bueno, & A. L. Abdalla. 2007. Use of an in vitro rumen gas production technique to evaluate some ruminant feedstuffs. In: J. Appl. Sci. Res. 3:34-41.
Silanikove, N., N. Gilboa, & Z. Nitsan. 1997. Interactions among tannins, supplementation and polyethylene glycol in goats given oak leaves: effects on digestion and food intake. Anim. Sci. 64: 479-483. https://doi.org/10.1017/S135772980001609X
Szumacher-Strabel, M., & A. Cieślak. 2010. Potential of phytofactors to mitigate rumen ammonia and methane production. J. Anim. Feed Sci. 19:319-337. https://doi.org/10.22358/jafs/66296/2010
Thornton, P. K. 2010. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society of London B: Biological Science. 365:2853-2867. https://doi.org/10.1098/rstb.2010.0134
Thornton, P. K., & M. Herrero. 2010. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proceedings of the National Academy of Sciences. 107: 19667-19672. https://doi.org/10.1073/pnas.0912890107
Valiollah, P., & E. Peyman. 2013. The determining of nutritive value of sallow and service leaves using nylon bags and gas production techniques. Middle-East J. Scient. Res. 17:1068-1072. https://doi.org/10.5829/idosi.mejsr.2013.17.08.11383
Van Soest, P. J., J. B. Robertson, & B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Waghorn, G. 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim. Feed Sci. Technol. 147:116-139. https://doi.org/10.1016/j.anifeedsci.2007.09.013
Wilson, J. R., & D. R. Mertens. 1995. Cell wall accessibility and cell structure limitations to microbial digestion of forage. Crop Sci. 35:251-259. https://doi.org/ 10.2135/cropsci1995.0011183X003500010046x
Zmora, P., A. Cieślak, E. Pers-Kamczyc, P. Szyszka, & M. Szumacher-Strabel. 2012. An in vitro study on the effect of sage, Salvia officinalis L., on rumen fermentation. J. Anim. Feed Sci. 21:613–623. https://doi.org/10.22358/jafs/66135/2012
Zongo, D., C. Ba, O, Diambra, & M. Coulibaly. 1997. Coloration effect of a natural source of pigment (Leucaena leucocephala) for use in poultry. Annales de Zootechnie 2: 185-190. https://doi.org/10.1051/animres:19970208
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.