Evaluation of Arbuscular Mycorrhizal Fungi Inoculum on Production and Nutrient Content of Pennisetum purpureum

P. D. M. H. Karti, I. Prihantoro, M. A. Setiana

Abstract

Land for forage planting is mainly on marginal land such as acid soil. However, the constraint is the low levels of phosphorus (P) that can inhibit forage production. Arbuscula mycorrhizal fungi has been known as a biological fertilizer because the fungi can help the absorption of phosphorus (P) on the root so that can improve the forage production and quality of nutrients. This study was aimed to utilize and evaluate the use of arbuscular mycorrhizal fungi inoculum in forage production and nutritive value of Pennisetum purpureum. The experiment used a completely randomized design with two factors (2 x 4) and 4 replications. The first factor was type of AMF inoculum (A and B) and the second factor was doses of AMF (D1= 0.5 kg/planting hole, D2= 1 kg/planting hole, D3= 1.5 kg/planting hole, and D4= 2 kg/planting hole). Control treatment was carried out separately. The result showed that the highest shoot dry weight production was on AD2 and significantly different (P<0.05) from BD1 and control. There was no interaction between type and dose of inoculum on shoot dry weight production and nutrition value. The inoculum A significantly increased (P<0.05) shoot dry weight production (34.04%), crude protein content (10.21%), phosphorus uptake (40%), N content (10.53%), N uptake (38.10%), and protein production (40.15%) of P. purpureum, compared to inoculum B. It can be concluded that AMF inoculum type A was the best inoculum for forage production.

References

Abbaspour, H. 2016. Contributions of arbuscular mycorrhizal fungi to growth, biomass and nutrient status of pistachio seedlings under saline conditions. J. Nutr. 7:67-74.

Adrianton. 2010. Pertumbuhan dan nilai gizi tanaman rumput gajah pada berbagai interval pemotongan. J. Agroland 17: 192-197.

AOAC. 2005. Official Methods of Analysis of AOAC International. 18th ed. Assoc. Off. Anal. Chem., Arlington.

Azcón, R., R. Rodríguez, E. Amora-Lazcano, & E. Ambrosano. 2008. Uptake and metabolism of nitrate in mycorrhizal plants as affected by water availability and N concentration in soil. Eur. J. Soil Sci. 59:131–138. https://doi.org/10.1111/j.1365-2389.2007.00962.x

Bucher, M. 2007. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26. https://doi.org/10.1111/j.1469-8137.2006.01935.x

Chaudhary, V., R. Kapoor, & A.K. Bhatnagar. 2008.Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl. Soil Ecol. 40:174-181. https://doi.org/10.1016/j.apsoil.2008.04.003

Conversa, G., C. Lazzizera, A. Bonasia, & A. Elia. 2013. Yield and phosphorus uptake of a processing tomato crop grown at different phosphorus levels in a calcareous soil as affected by mycorrhizal inoculation under field conditions. Biol. Fertil. Soils 49:691–703. https://doi.org/10.1007/s00374-012-0757-3

Evan, J. R. 1989. Photosynthesis and nitrogen relationships in leaves of Ca plants. Oecologia 78:9-19. https://doi.org/10.1007/BF00377192

Herman D, M. Firestone, E. Nuccio, & A. Hodge. 2012. Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiol. Ecol. 80:236–247. https://doi.org/10.1111/j.1574-6941.2011.01292.x

Heydari, M. M & A. Maleki. 2014. Effect of phosphorus sources and mycorrhizal inoculation on root colonization and phosphorus uptake of barley (Hordeum vulgare L.). Int. J.Curr. Microbiol. App. Sci 3:235-248.

Hodge, A., & K. Storer. 2015. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386:1–19. https://doi.org/10.1007/s11104-014-2162-1

Karti, P. D. M. H., D. A. Astuti, & S. Nofyangtri. 2012. The role of arbuscular mycorrhizal fungi in enhancing productivity, nutritional quality, and drought tolerance mechanism of Stylosanthes seabrana. Med. Pet. 35: 67-72. https://doi.org/10.5398/medpet.2012.35.1.67

Karti, P. D. M. H. & Y. Setiadi. 2011. Respon pertumbuhan, produksi dan kualitas rumput terhadap penambahan fungi mikoriza arbuskula dan asam humat pada tanah masam dengan aluminium tinggi. JITV 16:104-111.

Leigh, J., A. Hodge, & A. H. Fitter. 2009. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol. 181:199–207. https://doi.org/10.1111/j.1469-8137.2008.02630.x

Lee, C.N., G.K. Fukumoto, M.S. Thorn, M.H. Stevenson, M. Nakahata, & R.M. Ogoshi. 2016. Bana grass (Pennisetum purpureum): A possible forage for ruminants in Hawai. Pasture and Range Management. PRM-11:1-8.

Liu, J., L Wu, S. Wei, X. Xiao, C. Su, P. Jiang, Z. Song, T. Wang, & Zengliang Y. 2007. Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul. 52:29–39. https://doi.org/10.1007/s10725-007-9174-2

Marschner, H & B. Bell. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant Soil 59:89-102. https://doi.org/10.1007/BF00000098

Munasik, C. I. Sutrisno, S. Anwar, & C. H. Prayitno.2012. The growth, yield and quality of elephant grass (Pennisetum purpureum) specific tolerant of acid soils by mutagenesis with ethyl methane sulfonate. Anim. Prod. 14:87-91.

Novianti, J., B. P. Purwanto, & A. Atabany. 2014. Efisiensi produksi susu dan kecernaan rumput gajah (Pennisetum purpureum) pada sapi perah FH dengan pemberian ukuran potongan yang berbeda. Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan. 2:224-230.

Ortas, I. 2003. Effect of selected mycorrhizal inoculation on phosphorus sustainability in sterile and non-sterile soils in the Harran Plain in South Anatolia. J. Plant Nutr. 26:1–17. https://doi.org/10.1081/PLN-120016494

Ortas, I. 2008. The Effect of Mycorrhizal Inoculation on Forage and Non Forage Plant Growth and Nutrient Uptake Under the Field Conditions. In: Options Mediterraneennes. Sustainable Mediterranean Grasslands and their Multi-functions. CIHEAM, Zaragoza, pp. 463–469.

Ortas, I. 2012. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under longterm field conditions. Field Crop. Res. 125:35–48. https://doi.org/10.1016/j.fcr.2011.08.005

Platt, S. G., & J. A. Bassham. 1978. Photosynthesis and Increased Production of Protein. In: Friedman M. (eds). Nutritional Improvement of Food and Feed Proteins. Advances in Experimental Medicine and Biology, vol 105. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3366-1_12

Puteri, R. E., P. D. M. H. Karti, L. Abdullah, & Supriyanto. 2015. Productivity and nutrient quality of some sorghum mutant lines at different cutting ages. Med. Pet. 38:132-137. https://doi.org/10.5398/medpet.2015.38.2.132

Reich, P. B & A. W. Schoettle. 1988. Role of phosphorus and nitrogen in photosynthetic and whole plant carbon gain and nutrient use efficiency in eastern white pine. Oecologia 77:25-33. https://doi.org/10.1007/BF00380920

Rychter, A. M. & I. M. Rao. 2005. Role of Phosphorus in Photosynthetic Carbon Metabolism. In Hand book of Photosynthesis. https://doi.org/10.1201/9781420027877.ch7

Sarkara, A. T. Asaedaa, Q. Wanga, & M. H. Rashid. 2016. Arbuscular mycorrhizal association for growth and nutrients assimilation of pharagmites japonica and polygonum cuspidatum plants growing on river bank soil. Communications In Soil Sci. Plant Anal. 47:87–100. https://doi.org/10.1080/00103624.2015.1108432

Sharma, M. P., & A. Adholeya. 2011. Developing prediction equations and optimizing production of three AM fungal inocula under on-farm conditions. Exp.Agric. 47:529–537. https://doi.org/10.1017/S0014479711000159

Shen, J., L.Yuan, J. Zhang, H. Li, Z. Bai, X. Chen, W. Zhang, & F. Zhang. 2011. Phosphorus dynamics: from soil to plant. Plant Physiol. 156:997–1005. https://doi.org/10.1104/pp.111.175232

Shukla, A., A. Kumar, A. Jha, & R. D. V. K. N. Ajit. 2012. Phosphorus threshold for arbuscular mycorrhizal colonization of crops and tree seedlings. Biol. Fert. Soils 48:109–116. https://doi.org/10.1007/s00374-011-0576-y

Smith S.E. & D.J. Read. 2008. Mycorrhizal Symbiosis. Third Edition. Academic Pr., UK.

Smith, S. E. & F. A. Smith. 2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13. https://doi.org/10.3852/11-229

Sowmen, S., L. Abdullah, P. D. M. H. Karti, & D. Sopandie. 2012. Physiological adaptation and biomass production of Macroptilium bracteatum inoculated with AMF in drought condition. Med. Pet. 35:133-139. https://doi.org/10.5398/medpet.2012.35.2.133

Taiz, L. & E. Zeiger. 2010. Plant physiology. 3rd ed. Sinauer Associates.

Taussky, H. H. & E. Shorr. 1953. A micro colorimetric method for the determination of inorganic phosphorus. J. Biol. Chem 202:675-685.

Van der Heijden, M. G. A. & T. R. Horton. 2009. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J. Ecol. 97:1139–1150. https://doi.org/10.1111/j.1365-2745.2009.01570.x

Winarto, N., I. Erwan, & I. S. K. Syafura. 2013. Ingredients nutrition before and after pelleting elephant grass (pennisetum purpureum) for animal feed ruminant. Int. J. Appl. Agric. Res. 8:13-20.

Authors

P. D. M. H. Karti
pancadewi_fapetipb@yahoo.com (Primary Contact)
I. Prihantoro
M. A. Setiana
KartiP. D. M. H., PrihantoroI., & SetianaM. A. (2018). Evaluation of Arbuscular Mycorrhizal Fungi Inoculum on Production and Nutrient Content of Pennisetum purpureum. Tropical Animal Science Journal, 41(2), 114-120. https://doi.org/10.5398/tasj.2018.41.2.114

Article Details

List of Cited By :

Crossref logo