Isolation of Cellulolytic Lactic-Acid Bacteria from Mentok (Anas moschata) Gastro-Intestinal Tract

H. Herdian, L. Istiqomah, E. Damayanti, A. E. Suryani, A. S. Anggraeni, N. Rosyada, A. Susilowati

Abstract

Mentok, a local Indonesian name’s of muscovy duck (Anas moschata), has been known as a duck with the capability to consume poor quality feed, high with non-starch carbohydrate (NSP) content. This capacity occurs because of the presence of microbial fermentation activity in the gastro intestinal tract (GIT) of mentok. However, the information about the identification and characterization of the cellulolytic microbes involved is limited. This study was expected to provide scientific contributions about gastrointestinal microbes, especially Lactic Acid Bacteria (LAB), with cellulolytic activities. The experiment was conducted to select LAB with cellulolytic activity from the GIT of mentok. Twenty six of selected LABs were isolated from the duodenum, cecum, and colon regions after microbiological characterization, i.e., morphology, catalase test, gas production, Gram staining, and motility test. Characterization for cellulolytic activity was analyzed by measuring the clearing zone on Carboxymethylcellulose (CMC) media, cell growth analysis on 1% CMC as a carbon source, and CMCase value. Pediococcus acidilactici MK 20 isolate from colon region was selected LAB with the highest cellulolytic activity with the clearing zone diameter, and the CMCase value of 2.33 mm and 0.0153 U/mL, respectively. Molecular identification using 16S rRNA gene sequences analysis revealed that P. acidilactici MK 20 isolate has 99% similarity with P. acidilactici strain ZW001. It was concluded that P. acidilactici MK 20 isolated from the colon part of the  gastrointestinal tract of mentok, the Indonesian muscovy duck (A. moschata) had cellulolytic activity.

References

Al Jassim, R. A. M., P.T. Scott, D. Krause, S. Denman, & C.S. McSweeney. 2005. Cellulolytic and lactic acid bacteria in the gastrointestinal tract of the horse. Recent Advances Anim. Nutrition Australia 15.

Ali, M., Sukirno, M. H. Tamzil, & M. Ichsan. 2014. Meat traits of Muscovy ducks fed on phytonutrition meal. Int. J. Poult. Sci. 13:204–207. https://doi.org/10.3923/ijps.2014.204.207

Apajalahti, J. 2005. Comparative gut microflora, metabolic challenges, and potential opportunities. J. Appl. Poult. Res. 14:444–453. https://doi.org/10.1093/japr/14.2.444

Bedford, M. R. 2000. Exogenous enzymes in monogastric nutrition - Their current value and future benefits. Anim. Feed Sci. Technol. 86:1–13. https://doi.org/10.1016/S0377-8401(00)00155-3

Bidura, I. G. N. G., N. W. Siti, & I. A. P. Utami. 2014. Isolation of cellulolytic bacteria from rumen liquit of Buffalo both as a probiotics properties and has CMC-ase activity to improve nutrient quality of soybean distillery by-product as feed Int. J. Pure App. Biosci. 2:10-18.

Boros, D., R. R. Marquardt, & W. Guenter. 1998. Site of exoenzyme action in gastrointestinal tract of broiler chicks. Can. J. Anim. Sci. 78:599–602. https://doi.org/10.4141/A97-092

Buchanan, N. P., L. B. Merritt, G. E. Seidel, & J. S. Moritz. 2005. The effects of non-starch polysaccharide enzyme inclusion and dietary energy restriction on performance of organically-reared broiler chickens. Poult. Sci. 84:83.

Căpriţă, R., A. Căpriţă, & C. Julean. 2010. Biochemical aspects of non-starch polysaccharides. Scientific Papers Animal Science and Biotechnologies. 43:368–375.

CIVAS (Center for Indonesian VeterinaryAnalytical Studies). 2006. A Review of Free Range Duck Farming Systems in Indonesia and Assesment of Their Implication in the Spreading of the Highly Pathogenic (H5N1) Strain of Avian Influenza (HPAI). pp. 1:62.

Cobos, M. A., A. L., de Coss, N. D. Ramirez, S. S. Gonzales, & R. F. Cerrato. 2011. Pediococcus acidilactici isolated from the rumen of lambs with rumen acidosis, 16S rRNA identify cation and sensibility to monensin and lasalocid. Res. Vet. Sci. 90: 26-30. https://doi.org/10.1016/j.rvsc.2010.05.006

Damayanti, E., H. Herdian, M. Angwar, A. Febrisiantosa, & L. Istiqomah. 2012. Lactic acid bacterial screening from gastrointestinal digestive tract of native and broiler chicken for probiotic candidate purposes. J. Indonesian Trop. Anim. Agric. 37: 168-175. https://doi.org/10.14710/jitaa.37.3.168-175

Damayanti, E., H. Julendra, A. Sofyan, & S. N. Hayati. 2014. Bile salt and acid tolerant of lactic acid bacteria isolated from proventriculus of broiler chicken. Med. Pet. 37:80-86. https://doi.org/10.5398/medpet.2014.37.2.80

Dantur, K. I., R. Enrique, B. Welin, & A. P. Castagnaro. 2015 Isolation of cellulolytic bacteria from the intestine of Diatraea saccharalis larvae and evaluation of their capacity to degrade sugarcane biomass. AMB Express 5:15. https://doi.org/10.1186/s13568-015-0101-z

Ferbiyanto, A., I. Rusmana, & R. Raffiudin. 2015. Characterization and identification of cellulolytic bacteria from gut of worker Macrotermes gilvus. HAYATI J. Biosci. 22. 197-200. https://doi.org/10.1016/j.hjb.2015.07.001

Fernandes, V. O., M. Costa, T. Ribeiro, L. Serrano, V. Cardoso, H. Santos, M. Lordelo, L.M.A. Ferreira, & C.M.G.A. Fontes. 2016. 1,3-1,4--Glucanases and not 1,4--glucanases improve thenutritive value of barley-based diets for broilers. Anim. Feed Sci. Technol. 211:153–163.

Fonty, G. & P. Gouet. 1989. Fibre-degrading microorganisms in the monogastric digestive tract. Anim. Feed Sci. Technol. 23:91–107. https://doi.org/10.1016/0377-8401(89)90092-8

Gaggia, F., P. Mattarelli, & B. Biavati. 2010. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 141:S15-S28. https://doi.org/10.1016/j.ijfoodmicro.2010.02.031

Ghose, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59. https://doi.org/10.1351/pac198759020257

Gomez, K.A. & A.A. Gomez. 1984. Stastitical procedures for agricultural research. Second edition. An international rice research institute book. John Willey and Sons Inc. New York. Toronto. 8-13; 188-207.

Gong, J., W. Si, R. J. Foster, R. Huang, H. Yu, Y. Yin, C. Yang, & Y. Han. 2007. 16S rRNA gene-based analysis of mucosa associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol. Ecol. 59: 147–157. https://doi.org/10.1111/j.1574-6941.2006.00193.x

Hamida, F., K. G. Wiryawan, & A. Meryandini. 2015. Selection of lactic acid bacteria as probiotic candidate for chicken. Med. Pet. 38: 138 – 144. https://doi.org/10.5398/medpet.2015.38.2.138

Istiqomah, L., S. N. Hayati, E. Damayanti, H. Julendra, A. A. Sakti, & T. Untari. 2013. Performance and meat quality of broilers infected with Escherichia coli and administered with bio additive, probiotic, and antibiotic. Med. Pet. 36: 14-20. https://doi.org/10.5398/medpet.2013.36.1.14

Jannah, S., A. Dinoto, K. Wiryawan, & I. Rusmana. 2014. Characteristics of lactic acid bacteria isolated from gastrointestinal tract of Cemani chicken and their potential use as probiotics. Med. Pet. 37:182-189. http://dx.doi.org/10.5398/medpet.2014.37.3.182

Julendra, H., A. E. Suryani, L. Istiqomah, E. Damayanti, M. Anwar, & N. Fitriani. 2017. Isolation of lactic acid bacteria with cholesterol-lowering activity from digestive tracts of Indonesian native chickens. Med. Pet. 40: 35–41. https://doi.org/10.5398/medpet.2017.40.1.35

Józefiak, D., A. Rutkowski, & S.A. Martin. 2004. Carbohydrate fermentation in the avian ceca: a review. Anim. Feed Sci. Technol. 113:1–15. https://doi.org/10.1016/j.anifeedsci.2003.09.007

Kimprasit, K. 2013. In vitro selection of potential lactic acid bacteria isolated from Ducks and Geese in Thailand. Kasetsart J. Natur. Sci. 47:261-270.

Krieg, N.R., J.T. Staley, D.R. Brown, B.P. Hedlund, B.J. Paster, N.L. Ward, W. Ludwig, & W.B. Whitman. 2010. Bergey’s Manual of Systematic Bacteriology. USA: Springer.

Kurzak, P., M. A. Ehrmann, & R. F.Vogel. 1998. Diversity of lactic acid bacteria associated with ducks. Systematic Appl. Microbiol. 21:588-592. https://doi.org/10.1016/S0723-2020(98)80071-4

Liang, Y. L., Z. Zhang, M. Wu, Y. Wu, & J. X. Feng. 2014. Isolation, screening, and identification of cellulolytic bacteria from natural reserves in the subtropical region of China and optimization of cellulase production by Paenibacillus terrae ME27-1. BioMed Res. Inter. ID 512497.

Macy, J. M., R. Farrand, & L. Montgomery. 1982. Cellulolytic and non-cellulolytic bacteria in rat gastrointestinal tracts. Appl. Environ. Microbiol. 44:1428-1434.

Meryandini, A., W. Widosari, B. Maranatha, T.C. Sunarti, N. Rachmania, & H. Satria. 2009. Isolasi bakteri selulolitik dan karakterisasi enzimnya. Makara Sains 13: 33-38.
Musikasang, H., A. Tani, A. H-kittikun, & S. Maneerat. 2009. Probiotic potential of lactic acid bacteria isolated from chicken gastrointestinal digestive tract. World J. Microbiol. Biotechnol. 25:1337–1345. https://doi.org/10.1007/s11274-009-0020-8

Porto, M. C. W., T. M. Kuniyoshi, P. O. S. Azevedo, M. Vitolo, & R. P. S. Oliveira. 2017. Pediococcus spp.: an important genus of lactic acid bacteria and pediocin producers. Biotechnol. Advances 35:361–374. https://doi.org/10.1016/j.biotechadv.2017.03.004

Promega. 2016. GoTaq® Green Master Mix Certificate of Analysis 9PIM712. http://worldwide.promega.com/resources/protocols/product-information-sheets/g/gotaq green-master-mix-m712-protocol/

Rahayu, A. G., Y. haryani, & F. Puspita. 2014. Uji aktivitas selulolitik dari 3 Isolat bakteri Bacillus sp. Galur Lokal Riau. JOM FMIPA 1(2).

Samira, M., R. Mohammad, & G. Gholamreza. 2011. Carboxymethyl-cellulase and filter-paperase activity of new strains isolated from Persian Gulf. Microbiol. J. 1: 8-16. https://doi.org/10.3923/mj.2011.8.16

Sari, W. N., Safika, Darmawi, & Y. Fahrima. 2017. Isolation and identification of a cellulolytic Enterobacter from rumen of Aceh cattle. Vet. World 10:1515-1520. https://doi.org/10.14202/vetworld.2017.1515-1520

Setyati, W.A. & Subagiyo. 2012. Isolasi dan seleksi bakteri penghasil enzim ekstraseluler (proteolitik, amiliolitik, lipolitik, dan sellulolitik), yang berasal dari sedimen kawasan Mangrove. Ilmu Kelautan 17: 164-168.

Sofyan, A., M. Angwar, H. Herdian, E. Damayanti, L. Istiqomah, A. Febrisiantosa, H. Julendra, M. H. Wibowo, & T. Untari. 2012. Performance enhancement and immunity profile of broiler treated feed additive containing lactic acid bacteria and Ganoderma lucidum. Med. Pet. 35: 201-206. https://doi.org/10.5398/medpet.2012.35.3.201

Suci, D. M., Z. Fitria, & R. Mutia. 2017. Meat fatty acid and cholesterol content of native Indonesian Muscovy Duck fed with rice bran in traditional farm. J. Anim. Prod. 19:37–45.

Sumarsih, S., B. Sulistiyanto, C. I. Sutrisno, & E. S. Rahayu. 2014. Characteristic of Lactobacillus isolated from Pengging Duck’s intestine as probiotics. Int. J. Poultry Sci. 13:47-51. https://doi.org/10.3923/ijps.2014.47.51

Torshizi, M., A.K. Rahimi, N. Mojgani, S. Esmaeilkhanian, & J.L. Grimes. 2008. Screening of indigenous strains of lactic acid bacteria for development of a probiotic for poultry. Asian-Aus. J. Anim. Sci. 21: 1495-1500.

Tugiyanti, E., T. Yuwanta, Zuprizal, & Rusman. 2013. Improving performance, meat quality and muscle fiber microstructure of native Indonesian muscovy duck through feed protein and metabolizable energy. Int. J. Poult. Sci. 12:653–659. https://doi.org/10.3923/ijps.2013.653.659

Wood, T. M. and K. M. Bhat. 1988. Methods for measuring cellulose activities in Methods in Enzymology vol. 160. Academic Press. Inc.

Xie, X. L., D. P. Bai, L. N. Xie, W. N. Zhang, X. H. Huang, & Y. F. Huang. 2015. Intestinal lactic acid bacteria from Muscovy duck as potential probiotics that alter adhesion factor gene expression. Genetics Molecular Res. 14:12262-12275. https://doi.org/10.4238/2015.October.9.15

Yang, W., F. Meng, J. Peng, P. Han, F. Fang, L. Ma, & B. Cao. 2014. Isolation and identification of a cellulolytic bacterium from the Tibetan pig’s intestine and investigation of its cellulase production. Electronic J. Biotechnol. 17:262–267. https://doi.org/10.1016/j.ejbt.2014.08.002

Yeh, R. H., C. W. Hsieh, & K. L. Chen. 2017. Screening lactic acid bacteria to manufacture two-stage fermented feed and pelleting to investigate the feeding effect on broilers. Poult. Sci. 236–246. https://doi.org/10.3382/ps/pex300

Authors

H. Herdian
hendravit@yahoo.com (Primary Contact)
L. Istiqomah
E. Damayanti
A. E. Suryani
A. S. Anggraeni
N. Rosyada
A. Susilowati
Author Biographies

H. Herdian, Research Centre For Natural Product Technologi (BPTBA) Indonesian Institutes of Sciences (LIPI)

Feed Bioadditive Technology Division, Senior  Researcher

L. Istiqomah, Research Centre For Natural Product Technologi (BPTBA) Indonesian Institutes of Sciences (LIPI)

Feed Bioadditive Technology Division, Young Researcher

E. Damayanti, Research Centre For Natural Product Technologi (BPTBA) Indonesian Institutes of Sciences (LIPI)

Feed Bioadditive Technology Division, Senior Researcher

A. E. Suryani, Research Centre For Natural Product Technologi (BPTBA) Indonesian Institutes of Sciences (LIPI)

Feed Bioadditive Technology Division, Young Researcher

A. S. Anggraeni, Research Centre For Natural Product Technologi (BPTBA) Indonesian Institutes of Sciences (LIPI)

Feed Bioadditive Technology Division, Young Researcher

N. Rosyada, Biology Study Program, Faculty of Math and Natural Sciences, Sebelas Maret University, Surakarta, Central Java, Indonesia

Bachelor Degree Graduation From Biology Study Program, Faculty of Math and Natural Sciences, Sebelas Maret University, Surakarta, Central Java, Indonesia

A. Susilowati, Biology Study Program, Faculty of Math and Natural Sciences, Sebelas Maret University, Surakarta, Central Java, Indonesia

Lecturer at  Biology Study Program, Faculty of Math and Natural Sciences, Sebelas Maret University, Surakarta, Central Java, IndonesiaLec
HerdianH., IstiqomahL., DamayantiE., SuryaniA. E., AnggraeniA. S., RosyadaN., & SusilowatiA. (2018). Isolation of Cellulolytic Lactic-Acid Bacteria from Mentok (Anas moschata) Gastro-Intestinal Tract. Tropical Animal Science Journal, 41(3), 200-206. https://doi.org/10.5398/tasj.2018.41.3.200

Article Details

List of Cited By :

Crossref logo