Rancangan Sistem Kendali Kelembaban Tanah Berbasis Mikrokontroler Arduino
Abstract
Abstract
Control of soil moisture can save water supply for crops. The soil moisture sensor integrated with the Arduino microcontroller board can be programmed as the control system. Addition of RTC module and SD module tools also make the system as the data logger. The purpose of this research was to developed the irrigation automation system with the control of soil moisture. This system has been integrated with the automation system using the power source of solar energy. Soil texture is sandy clay loam, which is dominated by the sand content of 59.67%. Rainfall during the study was 58.5 mm. The control system with Arduino board, set to keep soil moisture between 0.23 cm3cm-3 - 0.30 cm3cm-3. The soil moisture in that range was able to be controlled with this system. Land without agricultural cultivation activities when water resources are limited, can be empowered with the application of irrigation automation systems.
Abstrak
Pengendalian kelembaban tanah dapat menghemat pasokan air untuk tanaman. Sensor kelembaban tanah yang diintegrasikan dengan papan mikrokontroler Arduino dapat diprogram sebagai sistem pengendalian tersebut. Penambahan alat RTC module dan SD module juga menjadikan sistem sebagai data logger. Tujuan dari penelitian ini adalah untuk mengembangkan sistem otomatisasi irigasi dengan kendali kelembaban tanah. Sistem ini terintegrasi dengan sistem otomatisasi menggunakan sumber tenaga dari energi surya. Tekstur tanah adalah lempung liat berpasir, yang didominasi oleh kandungan pasir sebesar 59.67%. Curah hujan selama penelitian adalah 58.5 mm. Sistem kontrol dengan papan Arduino, diatur untuk menjaga kelembaban tanah antara 0.23 cm3cm-3 – 0.30 cm3cm-3. Kelembaban tanah pada kisaran tersebut mampu dikontrol dengan sistem ini. Lahan tanpa kegiatan budidaya pertanian pada saat sumber daya air terbatas, dapat diberdayakan dengan aplikasi sistem otomatisasi irigasi.
References
Bajer, L., O. Krejcar. 2015. Design and realization of
low cost control for greenhouse environment with
remote control. IFAC-PapersOnLine vol. 48(4):
-373. doi: 10.1016/j.ifacol.2015.07.062.
Banzi, M. 2011. Getting Started with Arduino, 2nd
Edition. Maker Media. Sebastopol CA (US).
Botula, Y-D, W. Cornelis, G. Baert, E.V. Ranst.
Evaluation of pedotransfer functions for
predicting water retention of soils in Lower Congo
(DR Congo). Agricultural water management vol.
: 1-10.
Coates, R.W., M.J. Delwiche, A. Broad, M. Holler.
Wireless sensor network with irrigation
valve control. Computers and electronics
in agriculture vol. 96: 13-22. doi: 10.1016/j.
compag.2013.04.013.
Deveci, O., M. Onkol, H.O. Unver, Z. Ozturk. 2015.
Design and development of a low-cost solar
powered drip irrigation system using Systems
Modeling Language. Journal of Cleaner
Production vol. 102: 529-544. doi: 10.1016/j.
jclepro.2015.04.124.
Devika, S., S. Khamuruddeen, S. Khamurunnisa, J.
Thota, K. Shaik. 2014. Arduino based automatic
plant watering system. International Journal of
Advanced Research in Computer Science and
Software Engineering vol. 4(10): 449-456.
Hong, G-Z, C-L. Hsieh. 2016. Application of
Integrated Control Strategy and Bluetooth for
Irrigating Romaine Lettuce in Greenhouse.
IFAC-PapersOnLine vol. 49(16): 381-386. doi:
1016/j.ifacol.2016.10.070.
Kamogawa, M.Y., J.C. Miranda. 2013. Use of"
Arduino" open source hardware for solenoid
device actuation in flow analysis systems.
Quimica Nova vol. 36(8): 1232-1235. doi:
1590/S0100-40422013000800023
Kim, J.Y., D.M. Glenn. 2017. Multi-modal sensor
system for plant water stress assessment.
Computers and Electronics in Agriculture vol.141:
-34. doi: 10.1016/j.compag.2017.07.009.
Koenka, I.J., J.Sáiz, P.C. Hauser. 2014.
Instrumentino: An open-source modular Python
framework for controlling Arduino based
experimental instruments. Computer Physics
Communications vol. 185(10): 2724-2729. doi:
1016/j.cpc.2014.06.007.
McCready, M., M. Dukes, G. Miller. 2009. Water
conservation potential of smart irrigation
controllers on St. Augustinegrass. Agricultural
Water Management vol. 96(11): 1623-1632. doi:
1016/j.agwat.2009.06.007.
Periasamy, P., N. Jain, I. Singh. 2015. A review
on development of photovoltaic water pumping
system. Renewable and Sustainable Energy
Reviews vol. 43: 918-925. doi: 10.1016/j.
rser.2014.11.019.
Rudiyanto, B.I. Setiawan, S.K. Saptomo. 2006.
Algoritma Filter Kalman untuk Menghaluskan
Data Pengukuran. Jurnal Keteknikan Pertanian
vol. 20(3): 287-292.
Salazar, R., J. Rangel, C. Pinzó, A. Rodríguez.
Irrigation system through intelligent
agents implemented with arduino technology.
ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journual vol. 1(6): 29-
doi: 10.14201/ADCAIJ2014262936.
[Vegetronix] Vegetronix Inc. 2017. VH400 Soil
Moisture Sensor Probes. [diunduh 2017 Agustus
tersedia pada http://www.vegetronix.com/
Products/VH400/.
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Jurnal Keteknikan Pertanian. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.