The Spectral trends of cabbage (Brassica oleracea L.) at different fertilization levels
Abstract
Cabbage is one of the important horticultural commodities that are widely preferred as fresh vegetables or other processed foods because it has a mild sweet taste. To meet the nutritional needs of cabbage plants during the growth process, fertilizer application is a common practice in the community. Identifying, characterizing, and monitoring mixed vegetable crops in fields using traditional methods is a challenge. Observations with multispectral, hyperspectral or proximal sensing optical satellite data such as spectroradiometers have been widely used for identification, characterization and monitoring of plants in agricultural land. However, research on identification, discrimination and quantitative mapping of cabbage spectral profiles in Indonesia using spectroradiometers is still limited. This study aims to identify the spectral response profile of cabbage plants planted in narrow land using the spectroradiometer and to analyze the spectral response of cabbage to different fertilization level treatments. The results showed that the spectral trend of cabbage plants at all growth phases had a trend similar to the spectral changes of green vegetation. Cabbage reflectance is low at visible light wavelengths and high at red edge and near infrared wavelengths. Fertilization treatment significantly affected the cabbage spectral at the 5% level. At the same growth phase with the higher dose of fertilizer, the higher the reflectance of visible light (blue, green and red), red edge and near infrared. Variation of stable reflectance values increased in visible light waves, red edge and near infrared is interpreted to indicate good growth status of cabbage. At the growth phase stage, with increasing age of plants regardless of fertilization level, the reflectance of cabbage in blue and red waves decreased slightly, on the contrary the reflectance of cabbage in red edge and near infrared increased until it reached its peak at 45 days after planting and decreased after 63 days after planting.
Downloads
References
Amirruddin, A.D., F.M. Muharam, M.H. Ismail, N.P. Tan and M.F. Ismail. 2022. Synthetic Minority Over-sampling Technique (SMOTE) and Logistic Model Tree (LMT)-Adaptive Boosting algorithms for classifying imbalanced datasets of nutrient and chlorophyll sufficiency levels of oil palm (Elaeis guineensis) using spektroradiometers and unmanned aerial vehicles. Computers and Electronics in Agriculture, 193: 1-16.
Ardiansyah, M., B. Nugroho dan A. Al-Fajar. 2022. Respon spektral tajuk jagung pada beberapa perlakuan pemupukan. Jurnal Ilmu Tanah Lingkungan, 1(24): 25-31.
Asner, G.P., J.A. Hicke and D.B. Lobell. 2008. Per-Pixel Analysis of Forest Structure Vegetation Indices, Spectral Mixture Analysis And Canopy Reflectance Modeling. P. 209-251 (chapter 7) in M.A. Wulder and S.E. Franklin, editors. Remote Sensing of Forest Environments: Concepts and Case Studies. Kluwer Academic Publishers. Boston (USA).
Boussadia, O., K. Steppe, H. Zgallai, S. Ben El Hadj, M. Braham, R. Lemeur and M.C. Van Labeke. 2010. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars “Meski” and “Koroneiki.” Scientia Horticulturae, 123(3): 336-342.
Brosinsky, A., T. Kuester, S. Foerster, H. Kaufmann, K. Segl and L. Guanter. (eds). 2019. Principles of imaging spectroscopy: Electromagnetic radiation and its interactions with earth surface materials. HYPERedu, EnMAP education initiative, German Centre for Geosciences GFZ; originally published October 2019, 2nd revision February 2023.
Chang, K.W., J.C. Lo and Y. Shen. 2005. Predicting rice yield using canopy reflectance measured at booting stage. Agronomy Journal, 97: 872 − 878.
[EKO] EKO Instruments. 2016. Instruction Manual: Portable Spektroradiometer. EKO Instruments CO., Ltd. Tokyo (JPN)
Fajri, L.N. dan Soelistyono. 2018. Pengaruh kerapatan tanaman dan pupuk urea terhadap pertumbuhan dan hasil tanaman kale (Brassica oleracea var acephala). PLANTROPICA Journal of Agricultural Science, 3(2): 133-140.
Feret, J.B., C. Francois, A. Gitelson, G.P. Asner, K.M. Barry, C. Panigada, D. Richardson and S. Jacquemoud. 2011. Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling. Remote Sensing of Environment, 115(10): 2742-2750.
Gitelson, A.A., Y.J. Kaufman and M.N. Merzlyak. 1996. Use of green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ., 58(3): 289–298.
Hardjo, K.S. dan L. Indrawati. 2018. Pola spektral tanaman tebu (Saccharum Officinarum L.) menggunakan spektrofotometer dan citra penginderaan jauh di Kabupaten Bantul. Jurnal Nasional Teknologi Terapan, 1(2): 153-160.
Honkavaara, E., J. Kaivosoja, J. Mäkynen, I. Pellikka, L. Pesonen, H. Saari, H. Salo, T. Hakala, L. Marklelin and T. Rosnell. 2012. Hyperspectral reflectance signatures and point clouds for precision agriculture by light weight UAV imaging system. In Proceedings of the XXII ISPRS Congress, Melbourne, Australia, 25 August–1 September 2012; Volume I − 7.
Horler, D.N.H., M. Dockray and J. Barber. 1983. The red edge of plant leaf reflectance. Int. J. Remote Sens, 4: 273-288.
Huang, W.J., D.W. Lamb, Z. Niu, Y.J. Zhang, L.Y. Liu and J.H. Wang. 2027. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture, 8(4-5): 187-197.
[Kementan] Kementerian Pertanian. 2024. Angka Tetap Hortikultura 2023. Direktorat Jenderal Hortikultura, Kementerian Pertanian. Jakarta (ID).
Mohamed, S.S.M. 2015. Studies On Cabbage Alternaria Leaf Spot Disease. Zigazig University. Mesir.
Muhammad, I., L. Yang, S. Ahmad, S. Farooq, A.A. Al-Ghamdi, A. Khan, M. Zeeshan, M.S. Elshikh, A.M. Abbasi and X.B. Zhou. 2022. Nitrogen fertilizer modulates plant growth, chlorophyll pigments and enzymatic activities under different irrigation regimes. Agronomy, 12(845): 1-20.
Naomi, A., J. Pertiwi, P.A. Permatasari, S.N. Dini dan A. Saefullah. 2018. Keefektifan panjang gelombang cahaya terhadap pertumbuhan tanaman kacang hijau. Gravity: Jurnal Ilmiah Penelitian dan Pembelajaran Fisika, 4(2): 94-102.
Nebiker, S., A. Annen, M. Scherrer and D. Oesch. 2008. A light-weight multispectral sensor for micro UAV - Opportunities for very high resolution airborne remote sensing. In International Archivesof the Photogrammetry, Remote Sensing and Spatial Information Sciences. International Society for Photogrammetry and Remote Sensing (ISPRS): Beijing, China, 2008; Volume 37(B1).
Padilla, F.M., M. Gallardo, M.T. Peña-Fleitas, R. De Souza and R.B. Thompson. 2018. Proximal optical sensors for nitrogen management of vegetable crops: A review. Journal of Sensors,18(7): 1-23
Purhartanto, L.N., P. Danoedoro dan P. Wicaksono. 2019. Kajian transformasi indeks vegetasi citra satelit Sentinel-2A untuk estimasi produksi daun kayu putih menggunakan linear spectral mixture analysis. Jurnal Nasional Teknologi Terapan, 3(1): 35-58.
[Pusdatin] Pusat Data dan Informasi. 2022. Statistik Konsumsi Pangan Tahun 2020. Pusat Data dan Sistem Informasi Pertanian, Kementerian Pertanian. Jakarta (ID).
Steiner, U., K. Burling and E.C. Oerke. 2008 Sensorik fur einen prazisierten Pflanzenschutz. Gesunde Pflanz, 60: 131-144.
Ustin, S.L. and S. Jacquemoud. 2020. How the optical properties of leaves modify the absorption and scattering of energy and enhance leaf functionality. Remote Sens. Plant Biodivers, 349-384.
Uysal, E. 2018. Effects of nitrogen fertilization on the chlorophyll content of apple. Meyve Bilimi/Fruit Science, 5(1): 12-17.
Virtanena, O., E. Constantinidoua and E. Tyystjärvi. 2020. Chlorophyll does not reflect green light – how to correct a misconception. Journal of biological education, 56(5): 552-559
Zhu, Y., X. Fan, X. Hou, J. Wu and T. Wang. 2014. Effect of different levels of nitrogen deficiency on switchgrass seedling growth. Crop Journal, 2(4): 223-234.
Copyright (c) 2024 Jurnal Ilmu Tanah dan Lingkungan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Department of Soil Science and Land Resources Departemen Ilmu Tanah dan Sumberdaya Lahan, Faculty of Agriculture Fakultas Pertanian, IPB University