Mitigasi Dan Arahan Pengelolaan Air Asam Tambang Melalui Hutan Rawa Buatan Di Lahan Pasca Tambang

Armaiki Yusmur, Muhammad Ardiansyah, Irdika Mansur

Abstract

The application of remote sensing using Unmanned Aerial Vehicle (UAV) technology to identify distribution of Acid Mine Drainage (AMD) as part of mitigation process has been done in PT. Jorong Barutama Greston. UAV imagery was interpreted visually to produce land cover map. Bare land area from land cover map is used as the boundary of the analysis area for the mitigation of AMD source. Color of soil in UAV images is used as training area for supervised classification to differentiate different pH. The result shows distribution of soil with pH between 2-3 is 1.2 ha, pH 3-4 is 4.5 ha, and pH 4-5 is 9 ha. This analysis can show that mapping results using aerial photo is effective to identify pH of soil in bare land as a source of acid to water in void and it used as input for revegetation and swamp forest planning as bio-phytoremediation efforts. Swamp forest as a wetland is one recomendation for sustainable water management on mine to increase pH and reduce heavy metal content. The success of constructed swamp forest as passive treatment for bio-phytoremediation is determined by the selection of plant species, site location, design and construction of swamp forest and maintenance. Typha latifolia, Salvinia sp., Fimbristylis globulosa, Chrysopogon zizanioides, Melaleuca leucadendra, Melaleuca cajuputi, Nauclea subdita and Nauclea orientalis L. are recom-mended as local selected plants for phytoremediation. Obtained six variables that significantly affected to determination of site location for constructed swamp forest are elevation (T), slope (S), land cover (L), cathment area (C), distance from channel (K) and distance from the monitoring pool (P). The model X = 0.2T + 0.2S + 0.1L + 0.15C + 0.3K + 0.05P applied to find very suit-able area with α = 0.05 and the R-square (R2) value 93.4%.

References

Alibasyah R. 2016. Perubahan beberapa sifat fisika dan kimia ultisol akibat pemberian pupuk kompos dan kapur dolomit pada lahan berteras. Jurnal Floratek. 11(1): 75-87.

Bonanno G, Cirelli GL. 2017. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia. Ecotoxicology and Environmental Safety. 143(1): 92 – 101. doi:10.1016/j.ecoenv.2017.05.021.

Chunkao K, Nimpee C, Duangmal K. 2012. The King’s initiatives using water hyacinth to remove heavy metals and plant nutrients from wastewater through Bueng Makkasan in Bangkok Thailand. Ecological Engineering. 39 (1): 40 – 52. doi:10.1016/j.ecoleng.2011.09.006.

Denholm CP, T P Danehy, M H. Dunn, S L Busler, C A. Neely, R M. Mahony, D A. Guy. 2016. Long-Term Effectiveness Of Three Passive Systems Treating Acidic, High-Metal, Abandoned Coal Mine Discharges Near De Sale, Pennsylvania [Internet]. [33rd Annual Meeting of the ASMR, June 4-9, 2016, Spokane, Washington]. Washington: ASMR.; [diunduh 2017 Okt 7]. Tersedia pada: https://www.asmr.us/Portals/0/Documents/Meetings/2016/16-01-Denholm.pdf.

Dhir B. 2013. Phytoremediation: Role of Aquatic Plants in Environmental CleanUp. New Delhi: Springer.

Direktorat Jenderal Mineral dan Batubara. 2013. Kumpulan Pedoman Teknis Lingkungan Pertambangan. Kementerian Energi dan Sumber Daya Mineral. Jakarta (31): Direktorat Jenderal Mineral dan Batubara.

Gautam M, Agrawal M. 2017. Phytoremediation of metals using vetiver (Chrysopogon zizanioides (L.) Roberty) grown under different levels of red mud in sludge amended soil. Geochemical Exploration. doi:10.1016/j.gexplo.2017.03.003.

Hairiah K, Sardjono MA, Sabarnurdin S. 2003. 4 Pemecahan Masalah: Upaya Menuju Pertanian Berkelanjutan. [Internet]. [Waktu dan tempat pertemuan tidak diketahui]. Bogor: [diunduh 2017 Okt 5]. Tersedia pada: http://www.worldagroforestry.org/SEA/Publications/Files/ book/BK0028-04/BK0028-04-3.pdf.

Iskandar, Sujatmiko, and Gautama RS. 2011. Acid Mine Drainage Management in Indonesian Mines [Internet]. [7th Australian Workshop on AMD held in Darwin on June 21-24, 2011]. Darwin (AU): [diunduh 2017 Okt 5]. Tersedia pada: https://amdworkshop.com.au/files/1168/7th%20AMD %20Front%20Pages%20of%20Proceedings.pdf

Juniarto A. 2017. Kompos Tandan Kosong Sawit untuk Meningkatkan Pertumbuhan Samama (Neolamarckia macrophylla Roxb.) di Lahan Pasca Tambang Batubara [tesis]. Bogor: Institut Pertanian Bogor.

Mays PA, Edwards GS. 2001. Comparisaon of Heavy metal accumulation in natural wetland and constructed wetlands receiving acid mine drainage. Ecol Eng. 16(4):487-500. doi:10.1016/S0925-8574(00)00112-9.

Muzaiyanah S dan Subandi. 2016. Peranan bahan organik dalam peningkatan produksi kedelai dan ubi kayu pada lahan kering masam. Jurnal Iptek Tanaman Pangan. 11(2): 149 -158.

Nairm 2016. Comprehensive Watershed Restoration via Ecological Engineering: The Role of Passive Treatment. [Internet]. [33rd Annual Meeting of the ASMR, June 4-9, 2016, Spokane, Washington]. Washington: ASMR.; [diunduh 2017 Okt 7]. Tersedia pada: https://www.asmr.us/Portals/0/ Documents/Meetings/2016/13-02-Nairn.pdf

Norton PJ. 1992. The control of acid mine drainage with wetlands. Mine Water Environ. 11(3):27-34. doi:10.1007/BF02914814.

Nurjanah AS. 2014. Potensi Simpanan Karbon Pada Tegakan Revegetasi Lahan Pasca Tambang PT Jorong Barutama Greston, Kalimantan Selatan [skripsi]. Bogor: Institut Pertanian Bogor.

Rafsanjani A. 2015. Pengaruh Bahan Organik Terhadap Eh dan pH, serta Korelasinya terhadap P Tersedia pada Tanah yang Digenangi [skripsi]. Bogor: Institut Pertanian Bogor.

Sasaki K, Ogino T, Endo Y, Kurosawa K. 2003. Field study on heavy metal acumulation in natural wetland receiving acid mine drainage. Mater Trans. 44(9):1877-1884.

Scheneider IAH, Rubio J, Misra M, Smith RW. 1995. Eichhornia Crassipes as biosorbent for heavy metal ions. Miner Eng. 8(9): 979 – 988. doi: 10.1016/0892-6875(95)00061-T.

Sengupta M. 1993. Environmental Impacts Of Mining, Monitoring, Restoration, And Control. New York: Lewis Publishers.

Sheoran AS, Sheoran V. 2006. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Miner Eng. 19(2):105-116. doi: 10.1016/j.mineng.2005.08.006.

Tuheteru FD. 2015. Potensi Lonkida (Nauclea Orientalis L.) Untuk Fitoremediasi Lahan Basah Air Asam Tambang [disertasi]. Bogor: Institut Pertanian Bogor.

Wetland Stewarship Partnership. 2009. Wetland Ways; Interim Guidelines for Wetland Protection and Conservation in British Colombia. Chapter 11: Wetland Enhancement and Restoration. British Colombia: Environmental Stewardship Division.

Widiyatmoko R, Wasis B, Prasetyo LB. 2017. Analisis pertumbuhan tanaman revegetasi di lahan bekas tambang silika holcim educational forest Cibadak, Sukabumi, Jawa Barat. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan. 7(1): 79-88. doi : 10.19081/jpsl.2017.7.1.79.

Authors

Armaiki Yusmur
micky@biotrop.org (Primary Contact)
Muhammad Ardiansyah
Irdika Mansur
YusmurA., ArdiansyahM. and MansurI. (2019) “Mitigasi Dan Arahan Pengelolaan Air Asam Tambang Melalui Hutan Rawa Buatan Di Lahan Pasca Tambang”, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management). Bogor, ID, 9(3), pp. 566-576. doi: 10.29244/jpsl.9.3.566-576.

Article Details

Most read articles by the same author(s)