Pengaruh konsentrasi asam klorida terhadap ekstraksi glukosamina dari kitosan Penaeus monodon sebagai sistem sediaan liposom The effect of hydrochloric acid concentration on glucosamin extraction from chitosan Penaeus monodon as liposomal-based delivery system

Suciarti Makatita, Wini Trilaksani, Wahyu Ramadhan

Abstract

Glucosamine is an important compound for maintaining joint health. Currently, almost all glucosamine needs in Indonesia still depend on imports. Therefore, developing glucosamine production with variations in HCl concentration is a strategic step to meet national needs. The study's goal is to find the best HCl concentration for breaking down chitosan using ultrasonic extraction to make glucosamine hydrochloride (GlcN-HCl) and putting it in a liposome system. Extraction was carried out with variations in HCl concentration of 2%, 4%, and 6%, with the hope of obtaining the best yield. The hydrolysis process was carried out with ultrasonic treatment for 40 minutes. The results indicated that the ultrasonic extraction method with variations in HCl concentration produced GlcN-HCl with good physicochemical characteristics. The yield obtained ranged from 78.95 to 78.95–86.20%. The resulting GlcN-HCl has a pH of 3.9–3.64 and a specific crystal structure at an angle of 2θ (9.87° and 28.95°) based on XRD analysis. The FTIR spectrum showed a characteristic absorption at wave number 1613 cm⁻¹, indicating the presence of amine groups. The particle size of GlcN-HCl ranged from 26 to 26–239 nm. Evaluation of the stability of liposomes containing GlcN-HCl during 4 days of storage showed that storage time affected the physical stability of liposomes, which was indicated by an increase in turbidity.

References

[AOAC] Cunnif Association of Official Analytical and Chemist. (2005). Official methods of analysis of AOAC international. Washington, DC (US): The Association of Offical Analytical Chemist, Inc.

[BSN] Badan Standardisasi Nasional. (1992). SNI 2891.1:1992, Cara Uji Makanan dan Minuman.BSN.

[BSN] Badan Standardisasi Nasional. (2004). Air dan air limbah bagian 11: Cara uji derajat keasaman pH dengan menggunakan alat pH meter. Jakarta: Badan Standarisasi Nasional.

Al-Arfaj., & Nawal, A. M. F. E-T. (2012). Carbon paste and modified carbon nanotubes naste sensors for determination of reducing-osteoarthritis drug glucosamine sulphate in bulk powder and in its pharmaceutical formulations. Int. J. Electrochem. Sci.

Anwekar, H., Patel, S., & Singhai, A, K. (2011). Liposome as drug carriers. Int. J. Pharm. Life Sci.(IJPLS). 2(7):945–951.

Baxter, A., Dillon, M., & Taylor, K, D, R, G. (1992). Improved method for IR Determination of the degree of N-acetylation of chitosan. Int. J. Biol. Macromol. 2:115–116.

Biswas, A, K., Islam, M, R., Choudhury, Z, S., Mostafa, A., & Kadir, M, F. (2014). Nanotechnology based approaches in cancer therapeutics. Adv. Nat. Sci. Nanosci. Nanotechnol. 5(4).doi:10.1088/2043-6262/5/4/043001.

Brugnerotto, J., Lizardib, J., Goycoolea, F, M., & ArguÈelles-Monalc, W, D, Á, J, M, R. (2001). An infrared investigation in relation with chitin and chitosan Characterization. J. Polym. 71(42):3569–3580.

Cahyono, E., Suptijah, P., & Wientarsih, I. (2014). Development of a pressurized hydrolysis method for producing glucosamine. J. Asian Agric. Food Sci. 2:390–396.

Cano-Salazar, L. F., Juárez-Ordáz, A, J., Gregorio-Jáuregui, K, M., Martínez-Hernández, J, L., Rodríguez-Martínez, J., & Ilyina, A. (2011). Thermodynamics of chitinase partitioning in soy lecithin liposomes and their storage stability. Appl. Biochem. Biotechnol. 165(7–8):1611–1627.doi:10.1007/s12010-011-9381-1.

Chang, M. C., Chiang, P, F., Kuo, Y, J., Peng, C, L., Chen, K, Y., & Chiang, Y, C. (2021). Hyaluronan-loaded liposomal dexamethasone– diclofenac nanoparticles for local osteoarthritis treatment. Int. J. Mol. Sci. 22(2):1–19.doi:10.3390/ijms22020665.

Chemat, F., Rombaut, N, S, A., Meullemiestre, A., Fabiano-Tixier, A., & Albert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. Ultrason. Sonochem. 34(1):540–560.

Chemat, F., Vian, M. A., & Cravotto, G. (2012). Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 13(7):8615–8627.doi:10.3390/ijms13078615.

Chowdary, K, P, R., & Dana, S, B. (2017). Preparation and evaluation of topical liposome containing glucosamine hydrochloride. Res. J. Pharm. Biol. Chem. Sci. 2(1):608–615.

Danaei, M., Kalantari, M., Raji, M., Samareh, F, H., Saber, R., Asnani, G, P., Mortazavi, S, M., Mozafari, M, R., Rasti, B., & Taheriazam, A. (2018). Probing nanoliposomes using single particle analytical techniques: effect of excipients, solvents, phase transition and zeta potential. Heliyon. 4(12):e01088.doi:10.1016/j.heliyon.2018.e01088.

Ex-situ, I, D, A, N., & Lestari, A. (2009). Apatit-Kitosan Dengan Metode.

Fan, R., Zhang, W., Wang, Y., Chen, D., & Zhang, Y. (2021). Metal Material Resistant to Hydrochloric Acid Corrosion. J. Phys. Conf. Ser. 1732(1).doi:10.1088/1742-6596/1732/1/012134.

Ghiasi, F., Eskandari, M, H., Golmakani, M, T., Rubio, R, G., & Ortega, F. (2021). Build-Up of a 3D Organogel Network within the Bilayer Shell of Nanoliposomes. A Novel Delivery System for Vitamin D3: Preparation, Characterization, and Physicochemical Stability. J. Agric. Food Chem. 69(8):2585–2594.doi:10.1021/acs.jafc.0c06680.

GRAS Associate L. (2012). GRAS Notice (GRN) No. 443. GRAS Assesssment ChitoClear® Shrimp-Derived Chitosan Food Usage Conditions for General Recognition of Safety for Primex, ehf Siglufjordur. ICELAND.

Hadi, P., Bahri, S., & Rasulu, H. (2023). Karakterisasi Kitosan Cangkang Landak Laut Jenis Tripneustes Gratilla Dengan Deasetilasi Konsentrasi Naoh Yang Berbeda. J. Pertan. Khairun. 2(2021):170–174.

Hardoko., Soegiharto, W., & Eveline. (2018). Pembuatan Glukosamina dari Kulit Udang Windu (Penaeus monodon) Melalui Hidrolisis dengan HCl Teknis dan Pemanasan. Pros. Simp. Nas. Kelaut. dan Perikan. V.:157–172.

Hustiany, R. (2016). Reaksi maillard pembentuk citarasa dan warna pada produk pangan. Banjarmasin Lambung Mangkurat Univ. Press.

Islam, M., Masum, S., Rahman, M., & Shaikh, A. (2011). Preparation of Glucosamine Hydrochloride from Indigenous Shrimp Processing Waste. Bangladesh J. Sci. Ind. Res. 46(3):375–378.doi:10.3329/bjsir.v46i3.9046.

Ismail, R., & Csóka, I. (2017). Novel strategies in the oral delivery of antidiabetic peptide drugs – Insulin, GLP 1 and its analogs. Eur. J. Pharm. Biopharm. 115:257–267.doi:10.1016/j.ejpb.2017.03.015.

Kudan, S., Eksittikul, T., & Pichyangkura, R, P, R. (2011). Preparation of N-acetyl-D_glucosamine and N,N′ diacetylchitobiose by enzymatic hydrolysis of chitin with crude chitinases. J. Biotechnol. 150:89.

Latrobdiba, Z, M., Fulyani, F., & Anjani, G. (2023). Liposome optimisation for oral delivery of nutraceuticals in food: a review. Food Res. 7(3):233–246.doi:10.26656/fr.2017.7(3).022.

Li, Z., Paulson, A, T., & Gill, T, A. (2015). Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. J. Funct. Foods. 19(December 2015):733–743.doi:10.1016/j.jff.2015.09.058.

McClements, D. J. (2018). Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Adv. Colloid Interface Sci. 253(2017):1–22.doi:10.1016/j.cis.2018.02.002.

Meata, B, A., Uju., & Trilaksani, W. (2019). Kitosan menggunakan asam dan ultrasonikasi Characteristics of Glucosamine Hydrochloride Produced from Hydrolysis of Chitosan Using Acid and Ultrasonication. JPB Kelaut. dan Perikan. 14(2):151–162.

Meata, B, A., Ginanjar, P., Aditia, R, P., Hasanah, A, N., Surilayani, D., Munandar, A., Haryati, S., Uju., & Trilaksani, W. (2021). Karakterisasi Nano Partikel Glukosamina Dari Kitosan Dengan Menggunakan Ultrasonikator Dan Metode Ball Milling. J. Perikan. dan Kelaut. 11(2):182–190.

Merugu, R., Reddy, M, V, B., & Lala, R, G. (2013). Evaluation of in Vitro Stability Studies on Nutraceuticals in Oral Solid Dosage Forms With Special Reference To Glucosamine. Int. Res. J. Pharm. 4(8):265–268.doi:10.7897/2230-8407.04854.

Mohanasrinivasan, V., Mishra, M., Paliwal, J, S., Singh, E., & Selvarajan, V, S, C. (2013). Study on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. J. Biotechnol. 4(2):167–175.

Nabil, M., Trilaksani, W., & Salamah, E. (2005). Pemanfaatan limbah tulang tuna (Thunnus sp.) sebagai sumber kalsium dengan metode hidrolisis protein. J. Penelit. Perikan. Indones. 9(2):34–45.

Nadia, L, M, H., Suptijah, P., & Ibrahim, B. (2014). Produksi dan karakterisasi nano kitosan dari cangkang udang windu dengan metode gelasi ionik. J. Pengolah. Has. Perikan. Indones. 17(2):119–126.

Ohnishi, N., Tanaka, S., Tahara, K., & Takeuchi, H. (2015). Characterization of insulin-loaded liposome using column-switching HPLC. Int J Pharm. 479(2):302–305.

Ong, S. G. M., Ming, L. C., Lee, K. S., & Yuen, K, H. (2016). Influence of the Encapsulation tas BraEfficiency and Size of Liposome on the Oral Bioavailability Wijayasoniver of Griseofulvin Loaded Liposomes. Pharmaceutics. 8(25):1–17.

Ph Pharmacopeia [USP] United States. (2006). United States Pharmacopeia (29th Ed.) & National Formulary (23rd Ed.). Maryland (US): Pharmacopeia (USP) Convention Inc.

Ramadhan, W., Tiftazani, M, H., Suseno, S, H., Irawan, A, S., Astriyani, A., Mahardika, V., Armi F, S., Silaban, R., Ghaisani, A, D., Firdaus, Z, et al. (2025). Effectiveness of Low-Deacetylation-Degree Chitosan as an Edible Coating for Apples, Tofu, and Tilapia Fillets. BIO Web Conf. 147:1–12.doi:10.1051/bioconf/202414701030.

Rasheed, M, S., Ansari, S, F., & Shahzadi, I. (2022). Formulation, characterization of glucosamine loaded transfersomes and in vivo evaluation using papain induced arthritis model. Sci. Rep. 12(1):1–13.doi:10.1038/s41598-022-23103-1.

Rihhadatulaisy, S., Sriwidodo, S., & Putriana, N, A. (2020). Stabilisasi Liposom dalam Sistem Penghantaran Obat. Maj. Farmasetika. 5(5):257.doi:10.24198/mfarmasetika.v5i5.27456.

Salvati, A., Åberg, C., Dos-Santos, T., Varela, J., Pinto, P., Lynch, I., & Dawson, K, A. (2011). Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: Toward models of uptake kinetics. Nanomedicine Nanotechnology, Biol. Med. 7(6):818–826.doi:10.1016/j.nano.2011.03.005.

Saragih., Setyowati B, W, M., Nanik., & Nurjanah, P, U. (2019). Optimasi Lahan Pada Sistem Tumpang Sari Jagung Manis. J. Agroqua. 17(2):115–125.doi:10.32663/ja.v.

Savitri, E., Juliastuti, S, R., Handaratri, A., Sumarno., & Achmad, R. (2014). Degradation of chitosan by sonication in very-low-concentration acetic acid. J. Polym. Degrad. Stab. 43:1109–13.

Sekarsari, S., Widarta, I, W, R., & Jambe, A, A, G, N, A. (2019). Pengaruh Suhu Dan Waktu Ekstraksi Dengan Gelombang Ultrasonik Terhadap Aktivitas Antioksidan Ekstrak Daun Jambu Biji (Psidium guajava L.). J. Ilmu dan Teknol. Pangan. 8(3):267.doi:10.24843/itepa.2019.v08.i03.p05.

Soeroso, S., Juwono., Isbagio., Harry., Kalim., Handono., Broto., Rawan., & Pramudyo, R. (2014). Buku Ajar Ilmu Penyakit Dalam. Ed ke-6. Jakarta: Internal Publishing.

Suptijah, P., Jacoeb, M, A., & Rachmania, D. (2011). Karakterisasi nano kitosan cangkang udang vanamei (Litopenaeus vannamei) dengan metode gelasi ionik. J. Pengolah. Has. Perikan. Indones. 17(2):78–84.

Tan, C, P., & Nakajima, M. (2005). Effect of polyglycerol esters of fatty acids on physicochemical properties and stability of beta-carotene nanodispersion prepared by emulsification/evaporation method. J. Sci. Food Agric. 85:121–126.

Walke, S., Srivastava, G., Nikalje, M., & Doshi, J, K, R. (2014). Fabrication of chitosan microspheres using vanillin/TPP dual crosslinkers for protein antigens encapsulation. J. Carbohydr. Polym. 128:188–98.

Wen, C., Zhang, J., Zhang, H., Dzah, C, S, Z, M., Duan, Y., & Ma, H, L, X. (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops –A review. Ultrason. Sonochem. 48(10):538–549.

World Health Organization. (2021). Global Report on Ageing and Health. Geneva WHO Press.

Xue, M., Wang, J., & Huang, M. (2022). Inulin-Modified Liposomes as a Novel Delivery System for Cinnamaldehyde. Foods. 11(10).doi:10.3390/foods11101467.

Authors

Suciarti Makatita
suciartimakatita@apps.ipb.ac.id (Primary Contact)
Wini Trilaksani
Wahyu Ramadhan
Makatita S., Trilaksani W., & Ramadhan W. (2025). Pengaruh konsentrasi asam klorida terhadap ekstraksi glukosamina dari kitosan Penaeus monodon sebagai sistem sediaan liposom: The effect of hydrochloric acid concentration on glucosamin extraction from chitosan Penaeus monodon as liposomal-based delivery system. Jurnal Pengolahan Hasil Perikanan Indonesia, 28(3), 322-335. https://doi.org/10.17844/jphpi.v28i3.62605

Article Details