Physicomechanical properties of bioplastics from kappa-carrageenan and cassava peel starch Sifat fisikomekanik bioplastik dari campuran kappa-karagenan dan pati limbah kulit singkong

Esa Ghanim Fadhallah, Frily Aurelia Salshabila Fahlevi, Hersan Pratama Ashari, Yosnita Anggriani, Ni Made Puspa Dewi, Dea Meranda, Elita Mulianingsih, Haidawati Haidawati, Nurullia Febriati

Abstract

Kappa-carrageenan, derived from red seaweed, is well-known for its excellent film-forming properties and is widely used as a bioplastic material. It is possible to improve the physical and mechanical properties of bioplas-tics by mixing kappa-carrageenan with cassava peel starch and polyvinyl alcohol (PVA) as a reinforcement. The goal of this study is to find the best combination of kappa-carrageenan and cassava peel starch for bio-plastic based on its thickness, tensile strength, elongation, and water vapor transmission rate (WVTR), as specified in JIS Z 1707. A completely randomized block design (CRBD) was employed with varying ratios of kappa-carrageenan and cassava peel waste starch. The findings show that the mixtures of kappa-carrageenan and cassava peel starch had a big effect on all of the bioplastic's physical and mechanical properties, except for its density. All bioplastic formulations met the JIS standard for tensile strength and elongation. Higher starch con-centrations significantly improved the barrier properties by reducing WVTR and water absorption. However, increasing starch concentration enhanced elongation while decreasing thickness, tensile strength, and Young's modulus, resulting in slower biodegradation. The best mix, which had 4% starch and 1% kappa-carrageenan, was thickest at 0.35 mm, a tensile strength of 1.14 MPa, an elongation of 25.78%, and a WVTR of 18.47 g/m²/day (Grade 3). The results show that kappa-carrageenan and waste starch from cassava peel can be used to make bioplastics that meet the standards for physical and mechanical properties. This could also help reduce plastic pollution in the future.

References

Adam, F., Othman, N. A., Yasin, N. H. M., Cheng, C. K., & Azman, N. A. M. (2022). Evaluation of reinforced and green bioplastic from carrageenan seaweed with nanocellulose. Fibers and Polymers, 23(9), 2885–2896. https://doi.org/10.1007/s12221-022-4006-6

Abdou, E. S., & Sorour, M. A. (2014). Preparation and characterization of starch/carrageenan edible films. International Food Research Journal, 21(1), 189–193.

Abdullah, A. H. D., Firdiana, B., Nissa, R. C., Satoto, R., Karina, M., Fransiska, D., Nurhayati, Agusman, Irianto, H. E., Priambudi, P., Marliah, S., & Ismadi. (2021). Effect of k-carrageenan on mechanical, thermal and biodegradable properties of starch–carboxymethyl cellulose (cmc) bioplastic. Cellulose Chemistry and Technology, 55(9–10), 1109–1117. https://doi.org/10.35812/CelluloseChemTechnol.2021.55.95

Abdullah, A. H. D., Putri, O. D., & Sugandi, W. W. (2019). Effects of starch-glycerol concentration ratio on mechanical and thermal properties of cassava starch-based bioplastics. Jurnal Sains Materi Indonesia, 20(4), 162-167. https://doi.org/10.17146/jsmi.2019.20.4.5505

Abe, M. M., Martins, J. R., Sanvezzo, P. B., Macedo, J. V., Branciforti, M. C., Halley, P., Botaro, V. R., & Brienzo, M. (2021). Advantages and disadvantages of bioplastics production from starch and lignocellulosic components. Polymers, 13(15), 2484-2509. https://doi.org/10.3390/POLYM13152484

Abedi-Firoozjah, R., Chabook, N., Rostami, O., Heydari, M., Kolahdouz-Nasiri, A., Javanmardi, F., Abdolmaleki, K., & Khaneghah, A. M. (2023). PVA/starch films: an updated review of their preparation, characterization, and diverse applications in the food industry. Polymer Testing, 118(1), 1-14. https://doi.org/10.1016/J.POLYMERTESTING.2022.107903

Adhikari, D., Mukai, M., Kubota, K., Kai, T., Kaneko, N., Araki, K. S., & Kubo, M. (2016). Degradation of bioplastics in soil and their degradation effects on environmental microorganisms. Journal of Agricultural Chemistry and Environment, 5(1), 23–34. https://doi.org/10.4236/jacen.2016.51003

Akhlaq, S., Singh, D., Mittal, S., & Siddiqui, M.H. (2024). A review on biodegradation of bioplastics in different environmental conditions. Polymer Science, Series B: Chemistry, 65, 733-745. http://dx.doi.org/10.1134/S1560090424600128

Amalia, B., Mailisa, T., Karima, R., & Herman, S. (2021). Karakterisasi label kolorimetrik dari karagenan/nanofiber selulosa dan ekstrak ubi ungu untuk indikator kerusakan pangan. Jurnal Kimia dan Kemasan, 43(2), 66-76. https://doi.org/10.24817/JKK.V43I2.7133

American Society for Testing and Materials. (2011). Standard test methods for water vapor transmission of plastic materials. Pennsylvania: ASTM International. doi.org/10.1520/E0096

American Society for Testing and Materials. (2020). Standard test methods for density and specific gravity (relative density) of plastics by displacement (Vol. D792). Pennsylvania: ASTM International. https://doi.org/10.1520/D0792-20.2

American Society for Testing and Materials. (2021). Standard practice for general techniques for obtaining infrared spectra for qualitative analysis (Vol. E1252-98). Pennsylvania: ASTM International. https://doi.org/10.1520/E1252-98R21

American Society for Testing and Materials. (2022). Standard test method for water absorption of plastics. Pennsylvania: ASTM International. https://doi.org/10.1520/D0570-22.2

Bayata, A. (2019). Review on nutritional value of cassava for use as a staple food. Science Journal of Analytical Chemistry, 7(4), 83–91. https://doi.org/10.11648/J.SJAC.20190704.12

Chan, M. K., & Tang, T. H. (2022). The properties of starch/cellulose/polyvinyl alcohol composite as hydrodegradable film. Polymers and Polymer Composites, 30(5), 1–8. https://doi.org/10.1177/09673911221100353

Charles, A. L., Motsa, N., & Abdillah, A. A. (2022). A comprehensive characterization of biodegradable edible films based on potato peel starch plasticized with glycerol. Polymers, 14(17), 3462-3476. https://doi.org/10.3390/polym14173462

Cheng, C., Chen, S., Su, J., Zhu, M., Zhou, M., Chen, T., & Han, Y. (2022). Recent advances in carrageenan-based films for food packaging applications. Frontiers in Nutrition, 9(1), 1-16. https://doi.org/10.3389/fnut.2022.1004588

de Jesus, G. A. M., Berton, S. B. R., Simões, B. M., Zola, R. S., Monteiro, J. P., Martins, A. F., & Bonafé, E. G. (2023). Κ-carrageenan/poly(vinyl alcohol) functionalized films with gallic acid and stabilized with metallic ions. International Journal of Biological Macromolecules, 253(12), 1-12. https://doi.org/10.1016/J.IJBIOMAC.2023.127087

de Lima Barizão, C., Crepaldi, M. I., Junior, O. de O. S., de Oliveira, A. C., Martins, A. F., Garcia, P. S., & Bonafé, E. G. (2020). Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production costs. International Journal of Biological Macromolecules, 165(12), 582–590. https://doi.org/10.1016/J.IJBIOMAC.2020.09.150

Dmitrenko, M., Kuzminova, A., Cherian, R. M., Joshy, K. S., Pasquini, D., John, M. J., Hato, M. J., Thomas, S., & Penkova, A. (2023). Edible carrageenan films reinforced with starch and nanocellulose: development and characterization. Sustainability, 15(22), 1-19. https://doi.org/10.3390/su152215817

Domene-López, D., García-Quesada, J. C., Martin-Gullon, I., & Montalbán, M. G. (2019). Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers, 11(7), 1–17. https://doi.org/10.3390/polym11071084

Edhirej, A., Sapuan, S. M., Jawaid, M., & Zahari, N. I. (2017). Effect of various plasticizers and concentration on the physical, thermal, mechanical, and structural properties of cassava-starch-based films. Starch - Stärke, 69(2), 1-11. https://doi.org/10.1002/STAR.201500366

Fadhallah, E. G., Zuidar, A. S., Dameswary, A. H., Assa’diyah, I. N., Juwita, N., Tullaila, S., Yudistiro, M. K. K. (2024). Sustainable bioplastics made from cassava peel waste starch and carrageenan formulations: synthesis and characterization. Molekul, 19(1), 36–45. https://doi.org/10.20884/1.jm.2024.19.1.8394

Favian, E., & Nugraheni, P. S. (2023). Effect of carrageenan addition on the characteristic of chitosan-based bioplastic. IOP Conference Series: Earth and Environmental Science, 1289(1), 1-15. https://doi.org/10.1088/1755-1315/1289/1/012039

Figaliah, F.M., Manab, A., & Sawitri, M.E. (2024). Characteristics of bioplastics with addition of beeswax and glucomannan. BIO Web of Conferences, 88(00021), 1-6. https://doi.org/10.1051/bioconf/20248800021

Fronza, P., Costa, A. L. R., Franca, A. S., & de Oliveira, L. S. (2023). Extraction and characterization of starch from cassava peels. Starch, 75(4), 1-14. doi.org/https://doi.org/10.1002/star.202100245

Garavito, J., Peña-Venegas, C. P., & Castellanos, D. A. (2024). Production of starch-based flexible food packaging in developing countries: analysis of the processes, challenges, and requirements. Foods, 13(24), 4096. https://doi.org/10.3390/foods13244096

Giyatmi, Melanie, S., Fransiska, D., Darmawan, M., & Irianto, H. E. (2018). Barrier and physical properties of arrowroot starch-carrageenan based biofilms. Journal of Bio-Science, 25(1), 45–56. https://doi.org/10.3329/jbs.v25i0.37498

Gómez-Aldapa, C. A., Velazquez, G., Gutierrez, M. C., Rangel-Vargas, E., Castro-Rosas, J., & Aguirre-Loredo, R. Y. (2020). Effect of polyvinyl alcohol on the physicochemical properties of biodegradable starch films. Materials Chemistry and Physics, 239(1), 1-7. https://doi.org/10.1016/j.matchemphys.2019.122027

Hanani, S., Suhaimy, M., Tun, U., Onn, H., Fauzi, B., Tun, U., & Onn, H. (2023). Effect of polyvinyl alcohol on cassava and potato starch plastic film: mechanical, thermal and swelling properties. Enhanced Knowledge in Sciences and Technology, 3(2), 460–471. https://doi.org/10.30880/ekst.2023.03.02.052

Hanani, Z. A. N., & Husna, A. B. A. (2018). Effect of different types and concentrations of emulsifier on the characteristics of kappa-carrageenan films. International Journal of Biological Macromolecules, 114(7), 710–716. https://doi.org/10.1016/J.IJBIOMAC.2018.03.163

Hanry, E. L., & Surugau, N. (2020). Characteristics and properties of biofilms made from pure carrageenan powder and whole seaweed (Kappaphycus sp.). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 76(2), 99–110. https://doi.org/10.37934/arfmts.76.2.99110

Hidayati, S., Zulferiyenni, Maulidia, U., Satyajaya, W., & Hadi, S. (2021). Effect of glycerol concentration and carboxy methyl cellulose on biodegradable film characteristics of seaweed waste. Heliyon, 7(8), e07799. https://doi.org/10.1016/j.heliyon.2021.e07799

Huang, X., Luo, X., Liu, L., Dong, K., Yang, R., Lin, C., Song, H., Li, S., & Huang, Q. (2020). Formation mechanism of egg white protein/κ-carrageenan composite film and its application to oil packaging. Food Hydrocolloids, 105(8), 1-11. https://doi.org/10.1016/J.FOODHYD.2020.105780

International Organization for Standardization. (2019). ISO 527-1:2019 Plastics — Determination of tensile properties. Geneva: ISO.

Islamiyah, H. S., Alamsjah, M. A., & Pujiastuti, D. Y. (2022). Application of modified starch in the carragenan-based biodegradable packaging from eucheuma cottonii on biodegradablility and mechanical properties. IOP Conference Series: Earth and Environmental Science, 1036(1), 1-8. https://doi.org/10.1088/1755-1315/1036/1/012072

Japanese Standard Association. (2019). JIS Z 1707 - General rules of plastic films for food packaging. Japan: Japanese Industrial Standard.

Kumar, A., Hasan, M., Mangaraj, S., Pravita, M., Verma, D. K., & Srivastav, P. P. (2022). Trends in edible packaging films and its prospective future in food: a review. Applied Food Research, 2(1), 1-17. https://doi.org/10.1016/j.afres.2022.100118

Kumar, R., Lalnundiki, V., Shelare, S. D., Abhishek, G. J., Sharma, S., Sharma, D., Kumar, A., & Abbas, M. (2024). An investigation of the environmental implications of bioplastics: recent advancements on the development of environmentally friendly bioplastics solutions. Environmental Research, 244(3), 1-18. https://doi.org/10.1016/J.ENVRES.2023.117707

Larotonda, F. D. S., Torres, M. D., Gonçalves, M. P., Sereno, A. M., & Hilliou, L. (2016). Hybrid carrageenan-based formulations for edible film preparation: benchmarking with kappa carrageenan. Journal of Applied Polymer Science, 133(2), 1-10. https://doi.org/10.1002/APP.42263

Li, C. (2022). Recent progress in understanding starch gelatinization - an important property determining food quality. Carbohydrate Polymers, 293(10), 1-13. https://doi.org/10.1016/J.CARBPOL.2022.119735

Lim, R., Kiew, P. L., Lam, M. K., Yeoh, W. M., & Ho, M. Y. (2021). Corn starch/pva bioplastics—the properties and biodegradability study using chlorella vulgaris cultivation. Asia-Pacific Journal of Chemical Engineering, 16(3), 1-13. https://doi.org/10.1002/APJ.2622

Liu, B., Zhang, J., & Guo, H. (2022). Research progress of polyvinyl alcohol water-resistant film materials. Membranes, 12(3), 1–13. https://doi.org/10.3390/membranes12030347

Liu, X., Chu, R., Hu, B., Xie, Q., Su, Z., & Zhuang, J. (2023). Research on heat transfer model of air permeability test device for food and drug soft packaging materials. Food Packaging and Shelf Life, 37, 101061. https://doi.org/10.1016/j.fpsl.2023.101061

Manuhara, G. J., Praseptiangga, D., Muhammad, D. R. A., & Maimuni, B. H. (2016). Preparation and characterization of semi-refined kappa carrageenan-based edible film for nano coating application on minimally processed food. AIP Conference Proceedings, 1710(1), 1-5. https://doi.org/10.1063/1.4941509

Masahid, A. D., Aprillia, N. A., Witono, Y., & Azkiyah, L. (2023). Karakteristik fisik dan mekanik plastik biodegradable berbasis pati singkong dengan penambahan whey keju dan plastisiser gliserol. Jurnal Teknologi Pertanian, 24(1), 23–34. https://doi.org/10.21776/ub.jtp.2023.024.01.3

Maulida, Siagian, M., & Tarigan, P. (2016). Production of starch based bioplastic from cassava peel reinforced with microcrystalline celllulose avicel ph101 using sorbitol as plasticizer. Journal of Physics: Conference Series, 710(1), 1-7. https://doi.org/10.1088/1742-6596/710/1/012012

Maziad, N. A., El-Aziz, A. B. E.-D. A., El-Hamouly, S., El-Hashish, M. A. E.-A. M., Rizk, S. A., & Nasef, N. R. (2018). Characterization of radiation prepared copolymer and studies of their biodegradability. Journal of Biosciences and Medicines, 6(2), 33–56. https://doi.org/10.4236/jbm.2018.62004

Menzel, C. (2020). Improvement of starch films for food packaging through a three-principle approach: Antioxidants, cross-linking and reinforcement. Carbohydrate Polymers, 250(1162828), 1-7. https://doi.org/10.1016/j.carbpol.2020.116828

Mohamed, I. O. (2021). Effects of processing and additives on starch physicochemical and digestibility properties. Carbohydrate Polymer Technologies and Applications, 2(12), 1-15. https://doi.org/10.1016/j.carpta.2021.100039

Muthukumar, J., Chidambaram, R., & Sukumaran, S. (2021). Sulfated polysaccharides and its commercial applications in food industries—a review. Journal of Food Science and Technology, 58(7), 2453–2466. https://doi.org/10.1007/S13197-020-04837-0/METRICS

Nigam, S., Das, A. K., & Patidar, M. K. (2021). Synthesis, characterization and biodegradation of bioplastic films produced from parthenium hysterophorus by incorporating a plasticizer (PEG600). Environmental Challenges, 5(12), 1-12. https://doi.org/10.1016/j.envc.2021.100280

Nissa, R. C., Fikriyyah, A. K., Abdullah, A. H. D., & Pudjiraharti, S. (2019). Preliminary study of biodegradability of starch-based bioplastics using ASTM G21-70, dip-hanging, and soil burial test methods. IOP Conference Series: Earth and Environmental Science, 277(1), 1-8. https://doi.org/10.1088/1755-1315/277/1/012007

Nugrahanto, A. D., Kurniawati, A., & Erwanto, Y. (2021). Karakteristik fisis bioplastik yang dibuat dari kombinasi pati tapioka dan kasein susu apkir. Majalah Kulit, Karet, dan Plastik, 37(2), 103-110. https://doi.org/10.20543/mkkp.v37i2.7422

Nurdiani, R., Firdaus, M., Astuti, R. T., Yasmin, P., Fauzi, A., Ningsih, O. T., Puspitasari, D. A., & Delima, M. P. (2024). Optimasi penambahan karagenan dan minyak asiri bawang putih pada edible coating dengan response surface methodology. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(9), 765-781. http://dx.doi.org/10.17844/jphpi.v27i9.51539

Olukanni, D. O., & Olatunji, T. O. (2018). Cassava waste management and biogas generation potential in selected local government areas in Ogun State, Nigeria. Recycling, 3(4), 58. https://doi.org/10.3390/recycling3040058

Oluwasina, O. O., Olaleye, F. K., Olusegun, S. J., Oluwasina, O. O., & Mohallem, N. D. S. (2019). Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. International Journal of Biological Macromolecules, 135(8), 282–293. https://doi.org/10.1016/J.IJBIOMAC.2019.05.150

Onovo, H. O., Akano, T. T., Onyegbule, D. U., Towolawi, E. T., & Ajala, T. S. (2022). A study of biodegradation of hybrid bioplastic films blend from manihot and triticum biopolymer. European Journal of Engineering and Technology Research, 7(3), 30–38. https://doi.org/10.24018/ejeng.2022.7.3.2772

Panatarani, C., Praseptiangga, D., Widjanarko, P. I., Azhary, S. Y., Nurlilasari, P., Rochima, E., & Joni, I. M. (2023). Synthesis, characterization, and performance of semi-refined kappa carrageenan-based film incorporating cassava starch. Membranes, 13(1), 1-19. https://doi.org/10.3390/membranes13010100

Pandey, A., Saha, A., Ganguly, B. (Bob), Hansell, R. I. C., & Sanyal, T. (2023). How plastics affect the marine environment: its sources, threats, and consequences, potential countermeasures for a healthy ocean environment. In S. Roychoudhury, T. Sanyal, K. Sen, & S. M. Sanyal (Eds.), A basic overview of environment and sustainable development. (pp. 520–540). Thakurnagar: International Academic Publishing House. https://doi.org/10.52756/boesd.2023.e02.032

Pilapitiya, P. G. C. N. T., & Ratnayake, A. S. (2024). The world of plastic waste: a review. Cleaner Materials, 11(3), 1-23. https://doi.org/10.1016/J.CLEMA.2024.100220

Raes, L., Mittempergher, D., & Jain, A. (2022). The economic impact of marine plastic pollution in Saint Lucia: impacts on the fisheries and tourism sectors, and the benefits of reducing mismanaged. Switzerland: IUCN. https://search.ebscohost.com/login.aspx?direct=true&db=ecn&AN=0011292&site=ehost-live

Rahmatullah, Putri, R.W., Rendana, M., Waluyo, U., & Andrianto, T. (2022). Effect of plasticizer and concentration on characteristics of bioplastic based on cellulose acetate from kapok (Ceiba pentandra) fiber. Science and Technology Indonesia, 7(1), 73–83. https://doi.org/10.26554/sti.2022.7.1.73-83

Ramadas, B. K., Rhim, J. W., & Roy, S. (2024). Recent progress of carrageenan-based composite films in active and intelligent food packaging applications. Polymers, 16(7), 1-26. https://doi.org/10.3390/polym16071001

Rosenboom, J. G., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7(2), 117-137. https://doi.org/10.1038/s41578-021-00407-8

Roy, S., & Rhim, J.W. (2021). Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and pickering emulsion of tea tree essential oil for active packaging applications. International Journal of Biological Macromolecules, 193B(12), 1-12. https://doi.org/10.1016/j.ijbiomac.2021.11.035

Sandria, N., Uju, & Suptijah, P. (2017). Depolimerisasi kappa karaginan dengan menggunakan peracetic acid. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(3), 524-535

Santos, C., Ramos, A., Luís, Â., & Amaral, M. E. (2023). Production and characterization of k-carrageenan films incorporating Cymbopogon winterianus essential oil as new food packaging materials. Foods, 12(11), 1-20. https://doi.org/10.3390/foods12112169

Sedayu, B. B., Cran, M. J., & Bigger, S. W. (2019). A review of property enhancement techniques for carrageenan-based films and coatings. Carbohydrate Polymers, 216(7), 287-302. https://doi.org/10.1016/J.CARBPOL.2019.04.021

Selvin, P. C., Perumal, P., Selvasekarapandian, S., Monisha, S., Boopathi, G., & Chandra, M. V. L. (2018). Study of proton-conducting polymer electrolyte based on k-carrageenan and NH4SCN for electrochemical devices. Ionics, 24(11), 3535–3542. https://doi.org/10.1007/S11581-018-2521-7/METRICS

Shah, M. A., Schmid, M., Aggarwal, A., & Wani, A. A. (2016). Testing and quality assurance of bioplastics. In P. Singh, A. A. Wani, & H.-C. Langowski (Eds.), food packaging materials: testing & quality assurance. (pp. 233–250). Boca Raton: CRC Press. https://doi.org/10.1201/9781315374390-10

Siregar, R. F., Santoso, J., & Uju. (2016). Karakteristik fisiko kimia kappa karaginan hasil degradasi menggunakan hydrogen peroksida. Jurnal Pengolahan Hasil Perikanan Indonesia, 19(3), 256-266.

Sohany, M., Tawakkal, I. S. M. A., Ariffin, S. H., Shah, N. N. A. K., & Yusof, Y. A. (2021). Characterization of anthocyanin associated purple sweet potato starch and peel-based ph indicator films. Foods, 10(9), 1-27. https://doi.org/10.3390/foods10092005

Sriphochai, W., & Prachayawarakorn, J. (2024). Natural wound dressing films prepared from acetylated starch/κ-carrageenan blend incorporated with mandelic acid. Journal of Metals, Materials and Minerals, 34(2), 1–10. https://doi.org/10.55713/jmmm.v34i2.1984

Sujuliyani, Pebriyanti, P., & Sipahutar, Y. H. (2021). Formulasi kapa dan iota karagenan dalam pembuatan produk kosmetik pelembap bibir. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(3), 330-336.

Suryanto, H., Rahmawan, A. W., Solichin, Sahana, R. T., Muhajir, M., & Yanuhar, U. (2019). Influence of carrageenan on the mechanical strength of starch bioplastic formed by extrusion process. IOP Conference Series: Materials Science and Engineering, 494(1), 1-7. https://doi.org/10.1088/1757-899X/494/1/012075

Syuhada, M., Sofa, S. A., & Sedyadi, E. (2020). The effect of cassava peel starch addition to bioplastic biodegradation based on chitosan on soil and river water media. Biology, Medicine, & Natural Product Chemistry, 9(1), 7–13. https://doi.org/10.14421/biomedich.2020.91.7-13

Tarique, J., Sapuan, S.M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Science Report, 11(13900), 1-17. https://doi.org/10.1038/s41598-021-93094-y

Tasende, M. G., & Manrique-Hernandez, J. A. (2016). Carrageenan properties and applications: A review. In L. Pereira (Ed.), Carrageenans: Sources and extraction methods, molecular structure, bioactive properties and health effects. (pp. 17–49). Nova Science Publishers.

Thuppahige, V. T. W., Moghaddam, L., Welsh, Z. G., Wang, T., Xiao, H. W., & Karim, A. (2023). Extraction and characterisation of starch from cassava (manihot esculenta) agro-industrial wastes. LWT, 182(6), 1-12. https://doi.org/10.1016/j.lwt.2023.114787

Thushari, G. G. N., & Senevirathna, J. D. M. (2020). Plastic pollution in the marine environment. Heliyon, 6(8), 1-16. https://doi.org/10.1016/j.heliyon.2020.e04709

Tyagi, V., & Bhattacharya, B. (2019). Role of plasticizers in bioplastics. MOJ Food Processing & Technology, 7(4), 128–130. https://doi.org/10.15406/mojfpt.2019.07.00231

Ulyarti, U., Lavlinesia, L., Surhaini, S., Siregar, N., Tomara, A., Lisani, L., & Nazarudin, N. (2021). Development of yam-starch-based bioplastics with the addition of chitosan and clove oil. Makara Journal of Science, 25(2), 91-97. https://doi.org/10.7454/mss.v25i2.1155

Uzamurera, A. G., Zhao, Z.-Y., Wang, P.-Y., Wei, Y.-X., Mo, F., Zhou, R., Wang, W.-L., Ullah, F., Khan, A., Xiong, X.-B., Li, M.-Y., Wesly, K., Wang, W.-Y., Tao, H.-Y., & Xiong, Y.-C. (2023). Thickness effects of polyethylene and biodegradable film residuals on soil properties and dryland maize productivity. Chemosphere, 329, 138602. https://doi.org/10.1016/j.chemosphere.2023.138602

Wahyuningtiyas, N. E., Suryanto, H., Sukarni, S., & Sari, N. D. I. (2018). Improvement of hardness and biodegradability of natural based bioplastic - effect of starch addition during synthesis. Advanced Engineering Forum, 28(1), 67–74. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AEF.28.67

Wang, T., Wang, S., Zhai, C., Wang, L., Xie, Y., Li, Q., & Zheng, X. (2021). Study of starch aging characteristics based on terahertz technology. Food Science & Nutrition, 9(8), 4431–4439. https://doi.org/10.1002/FSN3.2417

Xu, H., Chen, L., Xu, Z., McClements, D. J., Cheng, H., Qiu, C., Long, J., Ji, H., Meng, M., & Jin, Z. (2023). Structure and properties of flexible starch-based double network composite films induced by dopamine self-polymerization. Carbohydrate Polymers, 299(1), 1-14. https://doi.org/10.1016/J.CARBPOL.2022.120106

Yahaya, W. A. W., Azman, N. A. M., Adam, F., Subramaniam, S. D., Hamid, K. H. A., & Almajano, M. P. (2023). Exploring the potential of seaweed derivatives for the development of biodegradable plastics: a comparative study. Polymers, 15(13), 1-18. https://doi.org/10.3390/POLYM15132884

Zaky, M. A., Pramesti, R., & Ridlo, A. (2021). Bioplastic processing of mixed glycerol, cmc and carrageenan. Journal of Marine Research, 10(3), 321–326. https://doi.org/10.14710/jmr.v10i3.28491

Zhao, X., Wang, Y., Chen, X., Yu, X., Li, W., Zhang, S., Meng, X., Zhao, Z. M., Dong, T., Anderson, A., Aiyedun, A., Li, F., Webb, E., Wu, Z., Kunc, V., Ragauskas, A., Ozcan, S., & Zhu, H. (2023). Sustainable bioplastics derived from renewable natural resources for food packaging. Matter, 6(1), 97–127. https://doi.org/10.1016/J.MATT.2022.11.006

Authors

Esa Ghanim Fadhallah
esa.ghanim@fp.unila.ac.id (Primary Contact)
Frily Aurelia Salshabila Fahlevi
Hersan Pratama Ashari
Yosnita Anggriani
Ni Made Puspa Dewi
Dea Meranda
Elita Mulianingsih
Haidawati Haidawati
Nurullia Febriati
Fadhallah E. G., Fahlevi F. A. S., Ashari H. P., Anggriani Y., Dewi N. M. P., Meranda D., Mulianingsih E., Haidawati H., & Febriati N. (2025). Physicomechanical properties of bioplastics from kappa-carrageenan and cassava peel starch : Sifat fisikomekanik bioplastik dari campuran kappa-karagenan dan pati limbah kulit singkong . Jurnal Pengolahan Hasil Perikanan Indonesia, 28(2), 109-129. https://doi.org/10.17844/jphpi.v28i2.61874

Article Details