Ultrapartikel tulang ikan kaya kalsium untuk peningkatan gel surimi pada pemanasan gelombang mikro Calcium-rich fish bone ultraparticles for enhancing surimi gel strength under microwave heating
Abstract
Achieving optimal gel strength is critical for ensuring the desired texture in surimi-based products. This study aims to determine the best concentration of calcium-rich fish bone ultraparticles (UpTIK) in surimi of threadfin bream fish based on the gel strength of surimi and endogenous TGase activity upon microwave heating. UpTIK was produced through calcination and nano-milling, resulting in a high calcium content. Microwave heating was applied with varying concentrations of UpTIK (0; 0.5; 1; and 2%). The parameters analyzed included the activity of endogenous TGase enzyme extract, L*a*b* color analysis and whiteness, water holding capacity (WHC), salt-soluble protein (PLG), and gel strength. The results indicated that a 1% UpTIK concentration achieved the highest TGase activity (0.47±0.05 U/mL) and gel strength (647.17 g/cm²). Additionally, the inclusion of UpTIK improved water holding capacity and salt-soluble protein content while preserving the whiteness of the surimi. Microwave heating also significantly reduced processing time by up to threefold compared to conventional heating. This study demonstrated a novel approach for activating endogenous TGase using UpTIK under microwave heating, providing a promising strategy for diversifying surimi products derived from tropical fisheries.
References
An, Y., Xiong, S., Liu, R., You, J., Yin, T., & Hu, Y. (2021). The effect of cross‐linking degree on physicochemical properties of surimi gel as affected by MTGase. Journal of the Science of Food and Agriculture, 101(15), 6228-6238. http://doi.org/10.1002/jsfa.11274
[AOAC] Association of Official Analitycal Chemist. (2005). Official Method of Analysis of the Association of Official Analitycal Chemist. 18th ed.
[BSN] Badan Standardisasi Nasional. (2006). SNI 01-2354.8:2009. Cara uji kimia - Bagian 8: Penentuan kadar Total Volatil Base Nitrogen (TVB-N) dan Trimetil Amin Nitrogen (TMA-N) pada produk perikanan.
[BSN] Badan Standardisasi Nasional. (2015). SNI 01-2346:2015. Pedoman Pengujian Sensori pada Produk Perikanan.
[BSN] Badan Standardisasi Nasional. (2021). SNI 2729:2021. Ikan segar
[BSN] Badan Standardisasi Nasional. (2021). SNI 2694:2021. Surimi beku.
[BSN] Badan Standardisasi Nasional. (2021). SNI 7266:2017. Bakso ikan
Benjakul, S., Singh, A., Sae-Leaw, T., & Balange, A. K. (2023). Endogenous Enzymes: Their Roles in Quality of Fish/Shellfish and Their Products. In Advances in Fish Processing Technologies. Apple Academic Press. pp. 235-269.
Cao, H. D., Fan, X., Jiao, J., Huang, J. Zhao, B., Yan, W., Zhou, W., Zhang, W., Ye, H., & Zhang. (2019). Importance of thickness in electromagnetic properties and gel characteristics of surimi during microwave heating. Journal of Food Engineering, 248, 80–8. http://doi.org/10.1016/j.jfoodeng.2019.01.003.
Ding, H. C., Li, X. P., Li, R. Z., Yi, S. M., Xu, Y. X., Mi, H. B., & Li, J. R. (2019). Changes of water state and gel characteristics of Hairtail (Trichiurus lepturus) surimi during thermal processing. Journal of Texture Studies, 50(4), 332-340. http://doi.org/10.1111/jtxs.12393
Eom, T., & Nam, T. J. (2024). Calcium absorption by Alaska pollock surimi protein hydrolysate promotes osteoblast differentiation. Journal of Food Science, 89(4), 2482-2493. http://doi.org/10.1111/1750-3841.16988
Fang, Q., Shi, L., Ren, Z., Hao, G., Chen, J., & Weng, W. (2021). Effects of emulsified lard and TGase on gel properties of threadfin bream (Nemipterus virgatus) surimi. LWT-Food Science and Technology, 146, 1-8. http://doi.org/10.1016/j.lwt.2021.111513
Huang, P. H., Cheng, Y. T., Chan, Y. J., Lu, W. C., Ko, W. C., Hsieh, H. C., & Li, P. H. (2023). Minimal addition of transglutaminase on the preparation and characteristics of tilapia (Oreochromis mossambicus) surimi. Fisheries Science, 89(5), 699-708. http://doi.org/10.1007/s12562-023-01699-1
Huang, Q., Huang, X., Liu, L., Song, H., Geng, F., Wu, W., & Luo, P. (2021). Nano eggshell calcium enhanced gel properties of Nemipterus virgatus surimi sausage: Gel strength, water retention and microstructure. International Journal of Food Science & Technology, 56(11), 5738-5752. http://doi.org/10.1111/ijfs.15142
Ji, L., Xue, Y., Zhang, T., Li, Z., & Xue, C. (2017). The effects of microwave processing on the structure and various quality parameters of Alaska pollock surimi protein polysaccharide gels. Food Hydrocolloids, 63, 77–84. http://doi.org/10.1016/j.foodhyd.2016.08.011
Jiao, X., Yang, H., Li, X., Cao, H., Zhang, N., Yan, B., Hu, B., Huang, J., Zhao, J., Zhang, H., Chen, W., & Fan, D. (2023). Green and sustainable microwave processing of surimi seafoods: A review of protein component interactions, mechanisms, and industrial applications. Trends in Food Science & Technology, 143, 104266. http://doi.org/10.1016/j.tifs.2023.104266
Kang, Z. L., Zhang, X. H., Li, K., Li, Y. P., Lu, F., Ma, H. J., Song, Z. J., Zhao, S. M., & Zhu, M. M. (2021). Effects of sodium bicarbonate on the gel properties, water distribution and mobility of low-salt pork batters. LWT-Food Science and Technology, 139(1), 1-8. http://doi.org/10.1016/j.lwt.2020.110567
Liu, J., Yang, S., Tang, R., Yang, W., & Xing, G. (2024). Enhanced tofu quality through calcium sulfate and transglutaminase treatment: physicochemical properties and digestibility analysis. International Journal of Food Science & Technology, 59(10), 7610-7618. http://doi.org/10.1111/ijfs.17543
Liu, L., Xiong, Y., Yin, T., Xiong, S., You, J., Liu, R., Huang, Q., & Shi, L. (2022). Effects of repeated deboning on structure, composition, and gelling properties of silver carp surimi. Journal of the Science of Food and Agriculture, 102(12), 5312-5320. http://doi.org/10.1002/jsfa.11885
Meng, L., Jiao, X., Yan, B., Huang, J., Zhao, J., Zhang, H., Chen W., & Fan, D. (2021). Effect of fish mince size on physicochemical and gelling properties of silver carp (Hypophthalmichthys molitrix) surimi gel. LWT-Food Science and Technology, 149, 1-7. https://doi.org/10.1016/j.lwt.2021.111912
Nakamura, Y., Takahashi, S., & Takahashi, K. (2021). Long-term suppression of suwari phenomenon for improvement in the manufacturing process of surimi gel product. LWT- Food Science and Technology, 150, 1-7. https://doi.org/10.1016/j.lwt.2021.111934
Nawaz, A., Xiong, Z., Xiong, H., Chen, L., Wang, P. K., Ahmad, I., Hu, C., Irshad, S. & Ali, S.W. (2019). The effects of fish meat and fish bone addition on nutritional value, texture and microstructure of optimised fried snacks. International Journal of Food Science and Technology, 54, 1045-1053. http://doi.org/10.1111/ijfs.13974
Petcharat, T., & Benjakul, S. (2017). Effect of gellan and calcium chloride on properties of surimi gel with low and high setting phenomena. RSC advances, 7(83), 52423-52434. http://doi.org/10.1039/C7RA10869A
Riyanto, B., Maddu, A., & Nurrahman. (2013). Material biokeramik berbasis hidroksiapatit tulang ikan tuna. Jurnal Pengolahan Hasil Perikanan Indonesia, 16(2), 119-132. http://doi.org/10.17844/jphpi.v16i2.8046
Riyanto, B., Rizqtha Maghfira Setiawan, A., Trilaksani, W., & Ramadhan, W. (2024). Effect of Post-ultrasonication-Assisted Treatment on Biocalcium Extraction from Tuna Eye Scleral Cartilage. Journal of Aquatic Food Product Technology, 1-14. http://doi.org/10.1080/10498850.2024.2439323
Riyanto, B., Trilaksani, W., & Azzahra, V. A. (2020). Desain pangan instan gizi khusus lansia berbasis binte biluhuta diperkaya nanomineral tulang ikan. Jurnal FishtecH, 9(2), 65-77. http://doi.org/10.36706/fishtech.v9i2.9923
Savlak, N., Çağındı, Ö., Erk, G., Öktem, B., & Köse, E. (2020). Treatment method affects color, chemical, and mineral composition of seabream (Sparus aurata) fish bone powder from by-products of fish fillet. Journal of Aquatic Food Product Technology, 29(6), 592-602. http://doi.org/10.1080/10498850.2020.1775742
Song, Z., Zhang, S., Qi, X., Yin, M., & Wang, X. (2024). Application of ultrasound technology in the washing process of surimi: improvement of meat yield and gel quality. Food Biophysics, 1-16. http://doi.org/10.1007/s11483-024-09843-9
Tolano-Villaverde, I. J., Torres-Arreola, W., Ocaño-Higuera, V. M., & Marquez-Rios, E. (2016). Thermal gelation of myofibrillar proteins from aquatic organisms. CyTA-Journal of Food, 14(3), 502-508. http://doi.org/10.1080/19476337.2015.1116024
Wang, X., Yi, Y., Guo, C., Wang, X., Yu, J., & Xia, S. (2023a). Enhanced sodium release and saltiness perception of surimi gels by microwave combined with water bath heating. Food Hydrocolloids, 134(1), 108018. http://doi.org/10.1016/j.foodhyd.2022.108018
Wang, Y., Tian, Y., Sun, J., & Yang, H. (2023b). Physicochemical properties of grass carp surimi as affected by pH and NaCl concentration during washing. International Journal of Food Properties, 26(1), 952-962. http://doi.org/10.1080/10942912.2023.2197168
Xie, D., Tang, Y., & Dong, G. (2024). Various factors affecting the gel properties of surimi: A review. Journal of Texture Studies, 55(3), e12847. http://doi.org/10.1111/jtxs.12847
Yang, S., Tu, Z. C., Wang, H., & Hu, Y. M. (2020). Effects of coagulant promoter on the physical properties and microstructure of the mixed system of ultrafine fishbone and surimi. LWT- Food Science and Technology, 131(2), 1-32. http://doi.org/10.1016/j.lwt.2020.109792
Yang, Z., Lu, K., Zhao, Y., Shi, X., Mao, W., Zheng, B., Xu Y., Gao P., & Zhou, R. (2024a). Effects of different heat-induced setting methods on the structural stability and properties of 3D-printed surimi gels. LWT-Food Science and Technology, 198, 115957. http://doi.org/10.1016/j.lwt.2024.115957
Yang, M. L., Wang, H., Zhou, Y. Q., Yin, J. F., Huang, J. J., Yan, Y., Zhang, F.S., & Xie, N. N. (2024b). Novel insights into induced low-salt Mandarin fish (Siniperca chuatsi) surimi gel with transglutaminase and microwave heating. International Food Research Journal, 31(4), 896-907. http://doi.org/10.47836/ifrj.31.4.08
Yin, T., Du, H., Zhang, J., & Xiong, S. (2016). Preparation and characterization of ultrafine fish bone powder. Journal of Aquatic Food Product Technology, 25(7), 1-27. http://doi.org/10.1080/10498850.2015.1010128
Yin, T., & Park, J. W. (2014). Effects of nano-scaled fish bone on the gelation properties of Alaska pollock surimi. Food Chemistry, 150, 463-468. http://doi.org/10.1016/j.foodchem.2013.11.041
Yin, T., Reed, Z. H., & Park, J. W. (2014). Gelling properties of surimi as affected by the particle size of fish bone. LWT-Food Science and Technology, 58(2), 412-416. http://doi.org/10.1016/j.lwt.2014.03.037
Yin, T., & Park, J. W. (2015). Textural and rheological properties of Pacific whiting surimi as affected by nano-scaled fish bone and heating rates. Food Chemistry, 180, 42–47. http://doi.org/10.1016/j.foodchem.2015.02.021
Yin, T., Park, J. W., & Xiong, S. (2017). Effects of micron fish bone with different particle size on the properties of silver carp (Hypophthalmichthys molitrix) surimi gels. Journal of Food Quality, 2017(1), 1-9. http://doi.org/10.1155/2017/8078062
Zhao, Y., Wei, G., Li, J., Tian, F., Zheng, B., Gao, P., & Zhou, R. (2023). Comparative study on the effect of different salts on surimi gelation and gel properties. Food Hydrocolloids, 144(10), 108982. http://doi.org/10.1016/j.foodhyd.2023.108982
Zhao, Z., Wang, Q., Yan, B., Gao, W., Jiao, X., Huang, J., Zhao, J., Zhang, H., Chen, W., & Fan, D. (2021). Synergistic effect of microwave 3D print and transglutaminase on the self-gelation of surimi during printing. Innovative Food Science & Emerging Technologies, 67(6), 102546. http://doi.org/10.1016/j.ifset.2020.102546
Zhang, J., He, S., Kong, F., Huang, S., Xiong, S., Yin, T., Du, H., Liu, R., & Zhang, M. (2017). Size reduction and calcium release of fish bone particles during nanomilling as affected by bone structure. Food and Bioprocess Technology, 10, 2176-2187. http://doi.org/10.1007/s11947-017-1987-z
Zhu, S., Wang, Y., Ding, Y., Xiang, X., Yang, Q., Wei, Z., song, H., Liu, S., & Zhou, X. (2024). Improved texture properties and toughening mechanisms of surimi gels by double network strategies. Food Hydrocolloids, 152, 109900. http://doi.org/10.1016/j.foodhyd.2024.109900
Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.