Kapasitas antioksidan, sitotoksisitas dan cemaran bakteri simplisia makroalga cokelat Antioxidant capacity, cytotoxicity, and bacterial contamination of brown macroalgae simplicia
Abstract
Brown algae are considered to be a source of antioxidants that can contribute to improving health. The purpose of this study was to determine the best combination of brown algae and solvent types based on the parameters of antioxidant capacity, toxicity to Vero cells, and bacterial contamination that affects brown algae simplicia during 30 d of storage. Brown algae, Sargassum aquifolium and Padina australis, were collected from Sanur Beach at the lowest point in the intertidal zone. Extraction was performed using three solvents: ethanol, methanol, and distilled water. The antioxidant capacity of the brown algae extracts was measured using the DPPH method. The brown algae extract, which showed antioxidant capacity and IC50 in the strong category, was used for cytotoxicity testing. Bacterial contamination testing was performed based on the simple storage time of brown algae for 30 d. The results showed that the combination of S. aquifolium and P. australis ethanol extract (ratio 1:10) had a yield percentage of 37.2% with an antioxidant capacity of 0.935±0.003 mg/L GAEAC and an IC50 value of 89.03 μg/mL (strong category). The combination of S. aquifolium and P. australis ethanol extracts had an IC50 value of 382.30 μg/mL (the weak category). Total plate count (TPC), Enterobacteriaceae, and coliforms increased with the storage time of simplicia for 30 days. These findings indicate that the combination of ethanol extracts of S. aquifolium and P. australis is a potential source of natural antioxidants.
References
Aminah, I., Putra, A. E., Arbain, D., & Handayani, D. (2019). Screening of cytotoxic activities toward WiDr and Vero cell lines of ethyl acetate extracts of fungi-derived from the marine sponge Acanthostrongylophora ingens. Journal of Applied Pharmaceutical Science, 9(1), 1–5. https://doi.org/10.7324/JAPS.2019.90101
Ansari, A., Parmar, K., & Shah, M. (2022). A comprehensive study on decontamination of food-borne microorganisms by cold plasma. Food Chemistry: Molecular Sciences, 4,1-12. https://doi.org/10.1016/j.fochms.2022.100098
Barberi, O. N., Byron, C. J., Burkholder, K. M., St. Gelais, A. T., & Williams, A. K. (2020). Assessment of bacterial pathogens on edible macroalgae in coastal waters. Journal of Applied Phycology, 32(1), 683–696. https://doi.org/10.1007/s10811-019-01993-5
Bizzaro, G., Vatland, A. K., & Pampanin, D. M. (2022). The One-Health approach in seaweed food production. Environment International, 158, 1-13. https://doi.org/10.1016/j.envint.2021.106948
Blikra, Marthe J, Løvdal, T., Vaka, M. R., Roiha, I. S., Lunestad, B. T., Lindseth, C., & Skipnes, D. (2019). Assessment of food quality and microbial safety of brown macroalgae (Alaria esculenta and Saccharina latissima). Journal of the Science of Food and Agriculture, 99(3), 1198–1206. https://doi.org/10.1002/jsfa.9289
Blikra, Marthe Jordbrekk, Altintzoglou, T., Løvdal, T., Rognså, G., Skipnes, D., Skåra, T., Sivertsvik, M., & Noriega Fernández, E. (2021). Seaweed products for the future: Using current tools to develop a sustainable food industry. Trends in Food Science & Technology, 118, 765–776. https://doi.org/10.1016/j.tifs.2021.11.002
Bourdoux, S., Li, D., Rajkovic, A., Devlieghere, F., & Uyttendaele, M. (2016). Performance of drying technologies to ensure microbial safety of dried fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 15(6), 1056–1066. https://doi.org/10.1111/1541-4337.12224
Cholaraj, R., & Venkatachalam, R. (2024). Investigation of antioxidant and anticancer potential of fucoidan (in-vitro & in-silico) from brown seaweed Padina boergesenii. Algal Research, 79, 1-12. https://doi.org/10.1016/j.algal.2024.103442
Chopin, T., & Tacon, A. G. J. (2021). Importance of seaweeds and extractive species in global aquaculture production. Reviews in Fisheries Science & Aquaculture, 29(2), 139–148. https://doi.org/10.1080/23308249.2020.1810626
D’Agostino, M., & Cook, N. (2016). Foodborne pathogens. In Encyclopedia of Food and Health (pp. 83–86). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00326-3
del Olmo, A., Picon, A., & Nuñez, M. (2018). The microbiota of eight species of dehydrated edible seaweeds from North West Spain. Food Microbiology, 70, 224–231. https://doi.org/10.1016/j.fm.2017.10.009
Dhanani, T., Shah, S., Gajbhiye, N. A., & Kumar, S. (2017). Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry, 10, S1193–S1199. https://doi.org/10.1016/j.arabjc.2013.02.015
Diharmi, A., Edison, Ariani, N. M., Sumarto, & Ilza, M. (2020). Komponen bioaktif dan aktivitas antioksidan ekstrak kasar Sargassum plagyophyllum. Jurnal Pengolahan Hasil Perikanan Indonesia, 23(1), 58-66.
Embling, R., Neilson, L., Randall, T., Mellor, C., Lee, M. D., & Wilkinson, L. L. (2022). ‘Edible seaweeds’ as an alternative to animal-based proteins in the UK: Identifying product beliefs and consumer traits as drivers of consumer acceptability for macroalgae. Food Quality and Preference, 100,1-10. https://doi.org/10.1016/j.foodqual.2022.104613
Emu, S. A., Dulal, M. A., Kali, T. Das, Chadni, M. S., Rasul, M. G., Mondal, M. N., Ahsan, M. E., Khan, M., & Shah, A. K. M. A. (2023). Effects of extracting solvents on phytochemical, antioxidant, and antibacterial activity of some seaweeds from the Bay of Bengal offshore Island. Food and Humanity, 1, 1157–1166. https://doi.org/10.1016/j.foohum.2023.09.005
Fagundo-Mollineda, A., Robledo, D., Vásquez-Elizondo, R. M., & Freile-Pelegrín, Y. (2023). Antioxidant activities in holopelagic Sargassum species from the Mexican Caribbean: Temporal changes and intra-thallus variation. Algal Research, 76, 1-10. https://doi.org/10.1016/j.algal.2023.103289
FAO. (2021). Global seaweeds and microalgae production, 1950–2019.
FDA. (2021). Outbreaks of Foodborne Illness. https://www.fda.gov/food/outbreaks-foodborne-illness/foodborne-pathogens
Fleurence, J. (2016). Seaweeds as Food. In Seaweed in Health and Disease Prevention (1st ed., pp. 149–167). Academic Press. https://doi.org/10.1016/B978-0-12-802772-1.00005-1
Ganesan, A. R., Tiwari, U., & Rajauria, G. (2019). Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Science and Human Wellness, 8(3), 252–263. https://doi.org/10.1016/j.fshw.2019.08.001
Ganesan, M., Trivedi, N., Gupta, V., Madhav, S. V., Radhakrishna Reddy, C., & Levine, I. A. (2019). Seaweed resources in India – current status of diversity and cultivation: prospects and challenges. Botanica Marina, 62(5), 463–482. https://doi.org/10.1515/bot-2018-0056
Gavahian, M., & Khaneghah, A. M. (2020). Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Critical Reviews in Food Science and Nutrition, 60(9), 1581–1592. https://doi.org/10.1080/10408398.2019.1584600
Govaerts, F., & Olsen, S. O. (2022). Exploration of seaweed consumption in Norway using the norm activation model: The moderator role of food innovativeness. Food Quality and Preference, 99, 1-11. https://doi.org/10.1016/j.foodqual.2021.104511
Hakim, M. M., & Patel, I. C. (2020). A review on phytoconstituents of marine brown algae. Future Journal of Pharmaceutical Sciences, 6(1), 1-11. https://doi.org/10.1186/s43094-020-00147-6
Handayani, D., Rivai, H., Mulyana, R., Suharti, N., Rasyid, R., & Hertiani, T. (2018). Antimicrobial and Cytotoxic Activities of Endophytic Fungi Isolated from Mangrove Plant Sonneratia alba Sm. Journal of Applied Pharmaceutical Science, 8(2), 049–053. https://doi.org/10.7324/JAPS.2018.8207
Hidayah, N., Sumandiarsa, I. K., & Alqadiri, W. M. (2024). Kandungan senyawa fitokimia dan aktivitas antifungal ekstrak Padina sp. menggunakan ultrasound assisted extraction terhadap Aspergillus flavus. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(4), 297-308. http://dx.doi.org/10.17844/jphpi.v27i4.44634
Hollants, J., Leliaert, F., De Clerck, O., & Willems, A. (2013). What we can learn from sushi: a review on seaweed-bacterial associations. FEMS Microbiology Ecology, 83(1), 1–16. https://doi.org/10.1111/j.1574-6941.2012.01446.x
Isnansetyo, A., Istiqomah, I., Widaningroem, R., Triyanto, R. A., Safia, R. Y., & Senny, H. (2019). Toxicity test for evaluating food safety of new edible seaweeds, Enteromorpha sp. and Laurencia sp. Jurnal Perikanan Universitas Gadjah Mada, 21(2), 73–38. https://doi.org/10.22146/jfs.34103.Uji
Isnansetyo, A., Laili Lutfia, F. N., Nursid, M., T, T., & Susidarti, R. A. (2016). Cytotoxicity of fucoidan from three tropical brown algae against breast and colon cancer cell lines. Pharmacognosy Journal, 9(1), 14–20. https://doi.org/10.5530/pj.2017.1.3
Isnansetyo, A., Lutfia, F. N. L., Nursid, M., Trijoko, & Susidarti, R. A. (2017). Cytotoxicity of fucoidan from three tropical brown algae against breast and colon cancer cell lines. Pharmacognosy Journal, 9(1), 14–20.
KKP. (2021). Tingkatkan Pertumbuhan Ekonomi, KKP Komitmen Genjot Produksi Rumput Laut. Direktorat Jenderal Perikanan Budidaya. https://kkp.go.id/djpb/artikel/32618-tingkatkan-pertumbuhan-ekonomi-kkp-komitmen-genjot-produksi-rumput-laut
Krasteva, G., Georgiev, V., & Pavlov, A. (2021). Recent applications of plant cell culture technology in cosmetics and foods. Engineering in Life Sciences, 21(3–4), 68–76. https://doi.org/10.1002/elsc.202000078
Lafarga, T., Acién-Fernández, F. G., & Garcia-Vaquero, M. (2020). Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Research, 48, 1-10. https://doi.org/10.1016/j.algal.2020.101909
Le-Trilling, V. T. K., Mennerich, D., Schuler, C., Sakson, R., Lill, J. K., Kasarla, S. S., Kopczynski, D., Loroch, S., Flores-Martinez, Y., Katschinski, B., Wohlgemuth, K., Gunzer, M., Meyer, F., Phapale, P., Dittmer, U., Sickmann, A., & Trilling, M. (2022). Identification of herbal teas and their compounds eliciting antiviral activity against SARS-CoV-2 in vitro. BMC Biology, 20(1), 1-21. https://doi.org/10.1186/s12915-022-01468-z
Li, Q., Feng, Z., Zhang, T., Ma, C., & Shi, H. (2020). Microplastics in the commercial seaweed nori. Journal of Hazardous Materials, 388, 1-8. https://doi.org/10.1016/j.jhazmat.2020.122060
Li, Q., Su, L., Ma, C., Feng, Z., & Shi, H. (2022). Plastic debris in coastal macroalgae. Environmental Research, 205, 1-12. https://doi.org/10.1016/j.envres.2021.112464
Li, Y., Zheng, Y., Zhang, Y., Yang, Y., Wang, P., Imre, B., Wong, A. C. Y., Hsieh, Y. S. Y., & Wang, D. (2021). Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Marine Drugs, 19(11), 1-21. https://doi.org/10.3390/md19110620
Liu, Z., & Sun, X. (2020). A critical review of the abilities, determinants, and possible molecular mechanisms of seaweed polysaccharides antioxidants. International Journal of Molecular Sciences, 21(20), 1-20. https://doi.org/10.3390/ijms21207774
Liu, Zhonghua, Xiong, Y., Yi, L., Dai, R., Wang, Y., Sun, M., Shao, X., Zhang, Z., & Yuan, S. (2018). Endo-β-1,3-glucanase digestion combined with the HPAEC-PAD-MS/MS analysis reveals the structural differences between two laminarins with different bioactivities. Carbohydrate Polymers, 194, 339–349. https://doi.org/10.1016/j.carbpol.2018.04.044
Lytou, A. E., Schoina, E., Liu, Y., Michalek, K., Stanley, M. S., Panagou, E. Z., & Nychas, G.-J. E. (2021). Quality and safety assessment of edible seaweeds Alaria esculenta and Saccharina latissima cultivated in Scotland. Foods, 10(9), 1-18. https://doi.org/10.3390/foods10092210
Madhusoodanan, J. (2021). Innovative tools take aim at antibiotic-resistant microbes. Nature, 596(7873), 611–613. https://doi.org/10.1038/d41586-021-02292-1
Manlusoc, J. K. T., Hsieh, C.-L., Hsieh, C.-Y., Salac, E. S. N., Lee, Y.-T., & Tsai, P.-W. (2019). Pharmacologic application potentials of sulfated polysaccharide from marine algae. Polymers, 11(7), 1-21. https://doi.org/10.3390/polym11071163
Mashjoor, S., Yousefzadi, M., Esmaeili, M. A., & Rafiee, R. (2016). Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf. Cytotechnology, 68(5), 1717–1726. https://doi.org/10.1007/s10616-015-9921-6
Matos, G. S., Pereira, S. G., Genisheva, Z. A., Gomes, A. M., Teixeira, J. A., & Rocha, C. M. R. (2021). Advances in extraction methods to recover added-value compounds from seaweeds: Sustainability and functionality. Foods, 10(3), 1-20. https://doi.org/10.3390/foods10030516
Menaa, F., Wijesinghe, U., Thiripuranathar, G., Althobaiti, N. A., Albalawi, A. E., Khan, B. A., & Menaa, B. (2021). Marine algae-derived bioactive compounds: A new wave of Nanodrugs?. Marine Drugs, 19(9), 1-36. https://doi.org/10.3390/md19090484
Michalak, I., Tiwari, R., Dhawan, M., Alagawany, M., Farag, M. R., Sharun, K., Emran, T. Bin, & Dhama, K. (2022). Antioxidant effects of seaweeds and their active compounds on animal health and production – a review. Veterinary Quarterly, 42(1), 48–67. https://doi.org/10.1080/01652176.2022.2061744
Moni, S.S., Alam, M.F., Makeen, H.A., Alhazmi, H.A., Sultan, M., Siddiqui, R., Jabeen, A., Sanobar, S., Alam, M.S., Rehman, Z.U., Elmobark, M.E., Madkhali, O., Haque, A., Albratty, M. (2021). Solvent extraction, spectral analysis and antibacterial activity of the bioactive crystals of Sargassum aquifolium (Turner) C. Agardh from red sea. Natural Product Research, 35, 1379–1383. https://doi.org/10.1080/14786419.2019.1645659
Nawaz, H., Shad, M. A., Rehman, N., Andaleeb, H., & Ullah, N. (2020). Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian Journal of Pharmaceutical Sciences, 56. 1-9. https://doi.org/10.1590/s2175-97902019000417129
Nazarudin, M. F., Yasin, I. S. M., Mazli, N. A. I. N., Saadi, A. R., Azizee, M. H. S., Nooraini, M. A., Saad, N., Ferdous, U. T., & Fakhrulddin, I. M. (2022). Preliminary screening of antioxidant and cytotoxic potential of green seaweed, Halimeda opuntia (Linnaeus) Lamouroux. Saudi Journal of Biological Sciences, 29(4), 2698–2705. https://doi.org/10.1016/j.sjbs.2021.12.066
Nurjanah, Aprilia, B. E., Fransiskayana, A., Rahmawati, M., & Nurhayati, T. (2018). Senyawa bioaktif rumput laut dan ampas teh sebagai antibakteri dalam formula masker wajah. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(2), 304-316.
Olugbami, J. O., Gbadegesin, M. A., & Odunola, O. A. (2014). In vitro evaluation of the antioxidant potential, phenolic and flavonoid contents of the stem bark ethanol extract of Anogeissus leiocarpus. African Journal of Medicine and Medical Sciences, 43(Suppl 1), 101–109. http://www.ncbi.nlm.nih.gov/pubmed/26681826
Park, M.H., Han, J.S. (2012). Hypoglycemic effect of Padina arborescens extract in streptozotocin-induced diabetic mice. Preventive Nutrition and Food Science. 17, 239–244. https://doi.org/10.3746/pnf.2012.17.4.239
Puspantari, W., Kusnandar, F., Lioe, H. N., & Laily, N. (2020). Penghambatan fraksi fucoidan rumput laut cokelat (Sargassum polycystum dan Turbinaria conoides) terhadap α-amilase dan α-glukosidase. Jurnal Pengolahan Hasil Perikanan Indonesia, 23(1), 122-136.
Pelvan, E., Karaoğlu, Ö., Önder Fırat, E., Betül Kalyon, K., Ros, E., & Alasalvar, C. (2022). Immunomodulatory effects of selected medicinal herbs and their essential oils: A comprehensive review. Journal of Functional Foods, 94,1-18. https://doi.org/10.1016/j.jff.2022.105108
Permatasari, A. A. A. P., Rosiana, I. W., Wiradana, P. A., Lestari, M. D., Widiastuti, N. K., Kurniawan, S. B., & Widhiantara, I. G. (2022). Extraction and characterization of sodium alginate from three brown algae collected from Sanur Coastal Waters, Bali as biopolymer agent. Biodiversitas Journal of Biological Diversity, 23(3), 1655–1663. https://doi.org/10.13057/biodiv/d230357
Prabhu, A., & Gadgil, M. (2021). Trace metals in cellular metabolism and their impact on recombinant protein production. Process Biochemistry, 110, 251–262. https://doi.org/10.1016/j.procbio.2021.08.006
Pratama, D., & Budiharjo, A. (2017). Efektivitas kombinasi ekstrak bahan herbal (Mengkudu, Pepaya, Kunyit) terhadap daya hambat pertumbuhan Aeromonas hydrophila secara In Vitro. Jurnal Akademika Biologi, 6(2), 7–16.
Rosiana, I. W., Wiradana, P. A., Permatasari, A. A. A. P., Pelupessy, Y. A. E. G., Dame, M. V. O., Soegianto, A., Yulianto, B., & Widhiantara, I. G. (2022). Concentrations of heavy metals in three brown seaweed (Phaeophyta: Phaeophyceae) collected from tourism area in Sanur Beach, Coast of Denpasar, Bali and public health risk assessment. Jurnal Ilmiah Perikanan dan Kelautan, 14(2), 327–339. https://doi.org/10.20473/jipk.v14i2.33103
Sari, N. K. Y., Deswiniyanti, N. W., & Wiradana, P. A. (2021). Evaluation of antimicrobial activity and phytochemical screening of red Kamboja (Plumeria rubra L.) extracts. Biogenesis: Jurnal Ilmiah Biologi, 9(2), 233–240. https://doi.org/10.24252/bio.v9i2.25409
Sajjadi, S.E., Ghanadian, M., Haghighi, M., Mouhebat, L. (2015). Cytotoxic effect of Cousinia verbascifolia Bunge against OVCAR-3 and HT-29 cancer cells. Journal of Herbmed Pharmacology, 4(1),15-19.
Sanger, G., Dotulong, V., & Damongilala, L. J. (2022). Isolasi asam lemak dan kadar pigmen rumput cokelat Sargassum crassifolium sebagai sumber antioksidan alami. Jurnal Pengolahan Hasil Perikanan Indonesia, 25(3), 475-493. http://dx.doi.org/10.17844/jphpi.v25i3.43033
Sobuj, M. K. A., Islam, M. A., Islam, M. S., Islam, M. M., Mahmud, Y., & Rafiquzzaman, S. M. (2021). Effect of solvents on bioactive compounds and antioxidant activity of Padina tetrastromatica and Gracilaria tenuistipitata seaweeds collected from Bangladesh. Scientific Reports, 11(1), 1-13. https://doi.org/10.1038/s41598-021-98461-3
Sofiana, M. S. J., Mardini, D. D., Safitri, I., Warsidah, & Nurdiansyah, S. I. (2024). Kandungan nutrien dan fitohormon rumput laut cokelat dari Perairan Pulau Lemukutan Kalimantan Barat. Jurnal Pengolahan Hasil Perikanan Indonesia, 27(4), 327-336. http://dx.doi.org/10.17844/jphpi.v27i4.46965
Suartika, G. A. M. (2015). Sand, Sea and Ceremony: Conflict over the Littoral Public Realm in Sanur, Bali. Procedia - Social and Behavioral Sciences, 179, 128–140. https://doi.org/10.1016/j.sbspro.2015.02.416
Sudhakar, M. P., Dharani, G., & Paramasivam, A. (2023). Evaluation of antimicrobial, antioxidant and cytotoxicity potential of R-phycoerythrin extracted from Gracilaria corticata seaweed. Current Research in Green and Sustainable Chemistry, 6, 1-6. https://doi.org/10.1016/j.crgsc.2022.100352
Ullmann, J., & Grimm, D. (2021). Algae and their potential for a future bioeconomy, landless food production, and the socio-economic impact of an algae industry. Organic Agriculture, 11(2), 261–267. https://doi.org/10.1007/s13165-020-00337-9
Watiniasih, N. L., Budiarsa, I. N., Antara, I. N. G., & Wiradana, P. A. (2022). Propolis extract as a green bacterial corrosion inhibitor on three types of metals. Biodiversitas Journal of Biological Diversity, 23(9), 4852-4860. https://doi.org/10.13057/biodiv/d230954
Widhiantara, I. G., Permatasari, A. A. A. P., Rosiana, I. W., Wiradana, P. A., Widiastini, L. P., & Jawi, I. M. (2021). Antihypercholesterolemic and antioxidant effects of Blumea balsamifera L. leaf extracts to maintain luteinizing hormone secretion in rats induced by high-cholesterol diets. The Indonesian Biomedical Journal, 13(4), 396–402. https://doi.org/10.18585/inabj.v13i4.1694
Widiastuti, N. K., Virginia, N. M., Fery Yastawan, I. M., Ayu Putri Permatasari, A. A., Wiradana, P. A., Widhiantara, I. G., & Hari Sucipto, T. (2023). Cytotoxicity evaluation of Erythrina lithosperma Miq. leaf extract against vero cell lines: In vitro study. Research Journal of Pharmacy and Technology, 16, 153–158. https://doi.org/10.52711/0974-360X.2023.00028
Yap, W.-F., Tay, V., Tan, S.-H., Yow, Y.-Y., & Chew, J. (2019). Decoding antioxidant and antibacterial potentials of malaysian green seaweeds: Caulerpa racemosa and Caulerpa lentillifera. Antibiotics, 8(3), 1-18. https://doi.org/10.3390/antibiotics8030152
Zainuri, M., Endrawati, H., Winarni, S., Arifan, F., Setyawan, A., & Hapsari, H. P. (2020). Analysis total plate count (tpc) and organoleptic test on seaweed chips. Journal of Physics: Conference Series, 1524(1), 012056. https://doi.org/10.1088/1742-6596/1524/1/012056
Zhu, Y., Li, C., Cui, H., & Lin, L. (2020). Feasibility of cold plasma for the control of biofilms in food industry. Trends in Food Science & Technology, 99, 142–151. https://doi.org/10.1016/j.tifs.2020.03.001
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.