Characteristics of carrageenan from seaweed hydrolysis using marine fungi as hard-shell capsule material Karakteristik karagenan dari hidrolisis rumput laut menggunakan kapang laut sebagai bahan cangkang kapsul keras
Abstract
Carrageenan is a polysaccharide extracted from red algae and can be used as a raw material for hard-shell capsules. Carrageenan can be produced by biological hydrolysis of marine fungi. The viscosity of carrageenan resulting from hydrolysis using marine fungi is lower than that of commercial carrageenan. Gelatine can be used to modify the characteristics of polysaccharide-based materials. The characteristics and types of carrageenan and plasticizers influence the interactions between carrageenan and gelatin. This study aimed to determine the characteristics of carrageenan produced by seaweed hydrolysis of a hard-shell capsule material. The physical characteristics of the carrageenan produced by hydrolysis were determined, including yield, viscosity, and gel strength. The properties of the hard-shell capsules, including dimensions, capsule weight, disintegration time, and moisture content, were analyzed. The yield was 25%, and the viscosity and gel strength of carrageenan were 45 cP and 175 gf, respectively. Carrageenan contains 13% moisture, 8% ash, and 8% cellulose. Semi-refined carrageenan produced by this treatment was used to prepare hard-shell capsules. The capsule made from semi-refined carrageenan had a body length of 18 mm, capsule length of 10 mm, capsule weight of 0.9 grams, disintegration time of 10 min, and moisture content of 12%.
References
Akhyar. (2009). Pengaruh proses pratanak terhadap mutu gizi dan indeks glikemik berbagai varietas beras Indonesia. Tesis. Institut Pertanian Bogor.
Andhikawati, A., Oktavia, Y., Ibrahim, B., & Tarman, K. (2014). Isolasi dan penapisan kapang laut endofit penghasil selulase. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 6(1), 219–228.
Arzani, L. D. P., Muhandri, T., & Yuliana, N. D. (2020). Karakteristik karagenan semi-murni dari rumput laut Kappaphycus striatum dan Kappaphycus alvarezii. Jurnal Teknologi Dan Industri Pangan, 31(2), 95–102. https://doi.org/10.6066/jtip.2020.31.2.95
Augsburger, L. L. (2002). Hard and soft shell capsules. Modern Pharmaceutics, Fourth Edition, Revised and Expanded, 512–575. https://doi.org/10.1201/9780824744694-14
BPOM. (2014). Peraturan lepala badan pengawas obat dan makanan Republik Indonesia nomor 12 tahun 2014 tentang persyaratan mutu obat tradisional.
Campo, V. L., Kawano, D. F., Silva, D. B. da, & Carvalho, I. (2009). Carrageenans: biological properties, chemical modifications and structural analysis - a review. Carbohydrate Polymers, 77(2), 167–180. https://doi.org/10.1016/j.carbpol.2009.01.020
Diharmi, A., Fardiaz, D., Andarwulan, N., & Heruwati, E. S. (2020). Karakteristik karagenan hasil isolasi Eucheuma spinosum (alga merah) dari perairan Sumenep Madura. Jurnal Perikanan dan Kelautan, 1, 222–222. https://doi.org/10.1201/9781482293579-17
Distantina, S. (2007). Pengaruh kondisi proses pada pengolahan Eucheuma cottonii terhadap rendemen dan sifat gel karagenan. Ekuilibrium, 8, 35–40.
Doh, H., Dunno, K. D., & Whiteside, W. S. (2020). Preparation of novel seaweed nanocomposite film from brown seaweeds Laminaria japonica and Sargassum natans. Food Hydrocolloids, 105. https://doi.org/10.1016/j.foodhyd.2020.105744
FAO. (2014). Carrageenan (Vol. 4, Issue 9000).
Fardhyanti, D. S., & Julianur, S. S. (2015). Karakterisasi edible film berbahan dasar ekstrak karagenan dari rumput laut (Eucheuma cottonii). Jurnal Bahan Alam Terbarukan, 4(2), 68–73. https://doi.org/10.15294/jbat.v4i2.4127
Gereniu, C. R. N., Saravana, P. S., Getachew, A. T., & Chun, B. S. (2017). Characteristics of functional materials recovered from Solomon Islands red seaweed (Kappaphycus alvarezii) using pressurized hot water extraction. Journal of Applied Phycology, 29(3), 1609–1621. https://doi.org/10.1007/s10811-017-1052-3
Glicksman, M. (1969). Gum technology in food industry. Academic Press, 701(10), 214–285
Gullapalli, R. P., & Mazzitelli, C. L. (2017). Gelatin and non-gelatin capsule dosage forms. Journal of Pharmaceutical Sciences, 106(6), 1453-1465. https://doi.org/10.1016/j.xphs.2017.02.006
Habib, M. A. B., Parvin, M., Huntington, T. C., & Hasan, M. R. (2008). A review of culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Aquaculture Circular.
Heijden, P. G. M. Van Der, Lansbergen, R., Axmann, H., Soethoudt, H., Tacken, G., Puttelaar, J. van den, & Rukminasari, N. (2022). Seaweed in Indonesia: farming, utilization and research. Wageningen Centre for Development Innovation, Wageningen University & Research. Report WCDI-22-220. Wageningen. https://doi.org/10.18174/578007
Henares, B. M., Enriquez, E. P., Dayrit, F. M., & Rojas, N. R. L. (2010). Iota-carrageenan hydrolysis by Pseudoalteromonas carrageenovora IFO12985. Philippine Journal of Science, 139(2), 131–138.
Heriyanto, H., Kustiningsih, I., & Sari, D. K. (2018). The effect of temperature and time of extraction on the quality of semi refined carrageenan (SRC). Matec Web of Conferences, 154, 0–5. https://doi.org/10.1051/matecconf/201815401034
Junianto, Kiki, H., & Ine, M. (2013). Karakteristik cangkang kapsul yang terbuat dari gelatin tulang ikan. Jurnal Akuatika, 4(1), 46–54.
Kavanagh. (2011). Fungi: biology and Applications. John Wiley and Sons Inc.
Kim, D. H., Lee, S. B., & Jeong, G. T. (2014). Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresource Technology, 161, 348–353. https://doi.org/10.1016/j.biortech.2014.03.078
KKP. (2021). Perikanan dan kelautan dalam angka tahun 2020. Pusat Data Statistik dan Informasi.
Lomartire, S., & Gonçalves, A. M. M. (2022). Novel technologies for seaweed polysaccharides extraction and their use in food with therapeutically applications-a review. Foods, 11(17), 1-19. https://doi.org/10.3390/ foods11172654
Mallik, J., Al faruq, A., Chrowdhury, H. B., & Dinar, A. M. (2013). Hard gelatin capsules (two piece) - a unique pharmaceutical dosage form - a exhaustive review. Asian Journal of Pharmaceutical Research and Development, 1, 1–9.
McHugh, D. J. (2003). A guide to the seaweed industry (FAO Fisher). FAO.
Munandar, A., Mustopa, A. Z., Tarman, K., & Nurhayati, T. (2014). Aktivitas antibakteri protein kapang Xylaria psidii KT30 terhadap Escherichia coli dan Bacillus subtilis [Antibacterial activity of protein fungus Xylaria psidii KT30 on Escherichia coli and Bacillus subtilis]. Jurnal Teknologi Dan Industri Pangan, 25(2), 146–151. https://doi.org/10.6066/jtip.2014.25.2.146
Obata, O., Akunna, J. C., & Walker, G. (2015). Hydrolytic effects of acid and enzymatic pre-treatment on the anaerobic biodegradability of Ascophyllum nodosum and Laminaria digitata species of brown seaweed. Biomass and Bioenergy, 80(0), 140–146. https://doi.org/10.1016/j.biombioe.2015.05.001
Pacheco-Q., Edisson-M., Roberto R-C., & María-D.V. (2020). Carrageenan: drug delivery systems and other biomedical applications. Marine Drugs, 18(11), 1-39. https://doi.org/10.3390/md18110583
Parenrengi, A., Dworjanyn, S., Syah, R., Pong-Masak, P. R., & Fahrur, M. (2020). Strain selection for growth enhancement of wild and cultivated eucheumatoid seaweed species in Indonesia. Sains Malaysiana, 49(10), 2453–2464. https://doi.org/10.17576/jsm-2020-4910-11
Pereira, L., Amado, A. M., Critchley, A. T., van de Velde, F., & Ribeiro-Claro, P. J. A. (2009). Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocolloids, 23(7), 1903–1909. https://doi.org/10.1016/j.foodhyd.2008.11.014
Qualicaps. (2011). The two piece gelatin capsule handbook. Qualicaps Inc.
Rahman. (2016). Potensi Kapang Laut dalam Hidrolisis Karagenan sebagai Sediaan Farmaseutika. Skripsi. Institut Pertanian Bogor.
Riquelme, M., Aguirre, J., Bartnicki-García, S., Braus, G. H., Feldbrügge, M., Fleig, U., Hansberg, W., Herrera-Estrella, A., Kämper, J., Kück, U., Mouriño-Pérez, R. R., Takeshita, N., & Fischer, R. (2018). Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiology and Molecular Biology Reviews, 82(2), 1–47. https://doi.org/10.1128/mmbr.00068-17
Saha, A., Mandal, P., Dasgupta, S., & Saha, D. (2008). Influence of culture media and environmental factors on mycelial growth and sporulation of Lasiodiplodia theobromae (Pat.) Griffon and Maubl. Journal of Environmental Biology, 29(3), 407–410.
Srividya, B., & Reddy., D. C. S. C. S. P. (2014). Capsules and it’s technology: an overview. International Journal of Pharmaceutics and Drug Analysis, 2(9), 727–733.
Sulistyo F.T., Utomo A.R., & Erni S. (2018). Pengaruh konsentrasi karagenan terhadap karakteristik fisikokimia edible film berbasis gelatin. Journal of Food Technology and Nutrition, 17(2), 75–80.
Wang, H., Zhai, L., & Geng, A. (2020). Enhanced cellulase and reducing sugar production by a new mutant strain Trichoderma harzianum EUA20. Journal of Bioscience and Bioengineering, 129(2), 242–249. https://doi.org/10.1016/j.jbiosc.2019.08.016
Wenno, M. R., Thenu, J. L., & Cristina Lopulalan, C. G. (2012). Karakteristik kappa karagenan dari Kappaphycus alvarezii pada berbagai umur panen. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan, 7(1), 61-67. https://doi.org/10.15578/jpbkp.v7i1.69
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.