Depolimerisasi Kitosan Menggunakan Sinar Ultraviolet dan Katalis Asam Klorida Depolymerization of chitosan with ultraviolet ray and chloride acid catalyst

Devi Faustine, Iriani Setyaningsih, Safrina Dyah Hardiningtyas

Abstract

Chitosan is a natural product of chitin deacetylation which has a long molecular chain and high molecular weight, this makes chitosan constrained in the process of its application. To overcome this, it is necessary to do a depolymerization process that can reduce the molecular weight of chitosan and shorten the molecular chain of chitosan. Chitosan depolymerization in this study was carried out using ultraviolet radiation and strong acids to use chitosan polymer chains to produce chitosan with shorter chains and can be used in water or neutral solvents. Depolymerization begins with dissolving chitosan with hydrochloric acid solution, then irradiated with ultraviolet light for 45 minutes, 60 minutes, 75 minutes. Chitosan solution was precipitated using isopropyl alcohol, and filtered with 40 mesh nylon cloth. Chitosan which has a pH of seven is dried to get chitosan dissolved air. The air soluble chitosan obtained was analyzed by comparing each given administration and chitosan control. The use of ultraviolet light and HCl solutions designed to depolymerize the characteristics of chitosan produced. Selected based on chitosan depolymerized with 75 minutes of ultraviolet light irradiation with yield of 70.07±14.00%, solubility 99.80±0.17%, white degree 99.99±0.00%, viscosity 49.78±0.31 cP, molecular weight 169.46±0.30 kDa, and zeta potential 73.03±1.92 mV. The decrease in molecular weight and viscosity on the characteristics of water-soluble chitosan shows that the process of chitosan depolymerization occurs when the depolymerization effect increases with the duration of ultraviolet light irradiation.

References

Adhiatama I, Zainudin M, Rokhati N. 2012. Hidrolisis kitosan menggunakan katalis asam klorida (HCl). Jurnal Teknologi Kimia dan Industri. 1(1): 245-251.
Adhyatmika, Martine R, Rochmadi, Ismail H. 2017. Preparasi nanopartikel senyawa pentagamavunon-0 menggunakan matriks polimer kitosan rantai sedang dan pengait silang natrium tripolifosfat melalui mekanisme gelasi ionik sebagai kandidat obat antiinflamasi. Majalah Farmaseutik. 13(2): 65-78.
Atma Y, Ramdhani H, Mustopa AZ, Pertiwi M, Maisarah R. 2018. Karakteristik fisikokimia gelatin tulang ikan patin (Pangasius sutchi) hasil ekstraksi menggunakan limbah buah nanas. Agritech. 38(1): 56-63.
Azuma K, Osaki T, Minami S, Okamoto Y. 2015. Anticancer and antiinflammatory properties of chitin and chitosan oligosaccharides. Journal of Functional Biomaterials. 6(1): 33-49.
Basmal J, Prasetyo A, Farida Y. 2007. Pengaruh suhu eterifikasi terhadap kualitas dan kuantitas kitosan larut air yang dibuat dari cangkang rajungan. Jurnal Pasca Panen dan Bioteknologi Kelautan dan Perikanan. 2(2): 99-106.
Brookfield. Brookfield dial viscometer operating instructions manual No. M/85-150-P700. Middleboro (US): Brookfield Engineering Laboratories, Inc. [diunduh 2019 Desember 1]. Tersedia pada: https://www.brookfieldengineering.com
Cahyono E. 2018. Karakteristik kitosan dari limbah cangkang udang windu (Panaeus monodon). Jurnal Akuatika Indonesia. 3(2): 96-102.
Chamidah A, Widiyanti CN, Febiyani NN. 2019. Pemanfaatan kitosan larut air sebagai hand sanitizer antiseptik. Jurnal Perikanan. 21(1): 9-16.
Chen RH, Tsaih ML. 1998. Effect of temperature on the intrinsic viscosity and conformation of chitosans in dilute HCl solution. Biological Macromolecules. 23(1): 135-141.
Dompeipen EJ. 2017. Isolasi dan identifikasi kitin dan kitosan dari kulit udang windu (Panaeus monodon) dengan spektroskopi infrared. Majalah Biam. 13(1): 31-41.
Domszy JG, Robert GAF. 1985. Evaluation of infrared spectroscopic techniques for analysing chitosan. Makromolecul Chemical. 186(1): 1671-1677.
Efiana NA, Nugroho AK, Martien R. 2013. Formulasi nanopartikel losartan dengan pembawaan kitosan. Jurnal Ilmu Kefarmasian Indonesia. 11(1): 7-12.
Farid SH. 2013. Rancangan bangun sensor viskositas cairan menggunakan strain gauge dengan prinsip silinder konsentris. Jurnal Neutrino.5(2): 87-94.
Handayani HPL, Siwi PR, Rokhati N. 2013. Depolimerisasi kitosan dengan hidrolisa enzimatik menggunakan enzim a-milase. Jurnal Teknologi Kimia dan Industri. 2(4): 55-64
Kendra DF, Hadwiger LA. 1984. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Experimental Mycology. 8(1): 276-281.
Kulikov S, Tikhonov V, Blagodatskikh I, Bezrodnykh E, Lopatin S, Khairullin R, Philippova Y, Abramchuck S. 2012. Molecular weight and pH aspects of the efficacy of oligochitosan against methicillin-resistant Staphylococcus aureus (MRSA). Carbohydrate Polymers. 87(1): 545-550
Lee LF, Lee WK, Maskat MY, Ilias RMD, Aziz SA, Kamarulzaman K, Osman H. 2005. Partial depolimerization of chitosan with the aid of bromelain. Pakistan Journal of Biological Sciences. 8(1): 73-77.
Li J, Du Y, Yang J, Feng T, Li A, Chen P. 2005. Preparation and characterisation of low molecular weight chitosan and chito-oligomers by a commercial enzyme. Polymer Degradation and Stability. 87(1): 441-448
Lin KW, Chao JY. 2001. Quality characteristics of reduced-fat chinese-style sausage as related to chitosan’s molecular weight. Meat Science. 59(1): 343-351.
Medical Research Council. 2013. Color Meter: RGB-1002, Color Analyzer, R, G, B, Hue, Saturation, Luminance. [diunduh 2019 September 12]. Tersedia pada: http://www.mrclab.com/data/products/RGB1002_SPEC.pdf
Mujamilah, Sulungbudi GTJ. 2013. Karakteristik dinamik sistem koloid magnetik berbasis nanopartikel oksida Fe-kitosan. Jurnal kimia kemasan. 35(1): 65-70.
Najafabadi SAA, Honarkae H, Moghadam M, Mirkhani V, Tahriri M, Tayebi L. 2018. UV irradiation-H2O2 system as an effective combined depolymerization technique to produce oligosaccharides from chitosan. Bio-Design and Manufacturing. 1(1): 62-68.
No HK, Park NY, lee SH, Meyers SP. 2002. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology. 74(1): 65-72
Prasojo BA, Siahaan P. 2015. Pengaruh berat molekul kitosan terhadap efisiensi enkapsulasi BSA (Bovine Serum Albumin) menggunakan agen crosslink asam sitrat. Jurnal Kimia Sains dan Aplikasi. 18(2): 62-66.
Pratiwi R. 2014. Manfaat kitin dan kitosan bagi kehidupan manusia. Oseana. 39(1): 35-43.
Purwanti A. 2014. Evaluasi proses pengolahan limbah kulit udang untuk meningkatkan mutu kitosan yang dihasilkan. Jurnal Teknologi. 7(1): 83-90.
Ridho FA, Riyanto B, Uju. 2017. Kitooligosakarida melalui depolimerisasi kitosan dengan hidrogen peroksida untuk biopreservatif pidang tradisional. Jurnal Pengolahan Hasil Perikanan Indonesia. 20(3): 536-548
Rokhati N. 2006. Pengaruh derajat deasetilasi khitosan dari kulit udang terhadap aplikasinya sebagai pengawet makanan. Reaktor. 10(2): 54-58.
Sanria N, Uju, Suptijah P. 2017. Depolimerisasi kappa karaginan dengan menggunakan peracetic acid. Jurnal Pengolahan Hasil Perikanan Indonesia. 20(3): 524-535
Santoso J, Adiputra KC, Soedirga LC, Tarman K. 2019. Effect of acetic acid hydrolysis on the characteristics of water soluble chitosan. IOP Conference Series: Earth and Environmental Science. 414(1): 1-8
Shon J, Eo JH, Hwang SJ, Eun JB. 2011. Effect of processing condition on functional properties of collagen powder from skate (Raja kenojei) skin. Food Science and Biotechnology. 20(1): 99-106.
Sun T, Zhou D, Xie J, Mao F. 2007. Preparation of chitosan oligomers and their antioxidant activity. European Food Research and Technology. 225(1): 451-456.
Tanasale MFJDP, Telussa I, Sekewael SJ, Kakerissa L. 2016. Ekstraksi dan karakterisasi kitosan dari kulit udang windu (Penaeus monodon) serta proses depolimerisasi kitosan dengan hidrogen peroksida berdasarkan variasi suhu pemanasan. Indonesian Journal of Chemical Research. 3(2): 308-316.
Thatipamula RP. Palem CR. Gannu R. Muudragada S. Yamsani MR. 2011. Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticel and nanostructured lipid carriers. Daru. 19(1): 23-32
Wang SM, Huang QZ, Wang QS. 2005. Study on the synergetic degradation of chitosan with ultraviolet light and hydrogen peroxide. Carbohydrate reserch. 340(1): 1143-1147
Wardhani IK, Badres S, Prasetyaningrum. 2013. Kinetika reaksi depolimerisasi karaginan pada suhu dan pH optimum dengan katalisator asam sulfat. Jurnal Teknologi Kimia dan Industri. 2(4): 177-183.
Xia W, liu P, Zhang J, Chen J. 2011. Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloid. 25(1): 170-179.
Yulina R, Winiati W, Kasipah C, Septiani W, Mulyawan AS, Wahyudi T. 2014. Pengaruh berat molekul kitosan terhadap fiksasi kitosan pada kain kapas sebagai antibakteri. Arena Tekstil. 29(2): 81-90.

Authors

Devi Faustine
devifaustine96@gmail.com (Primary Contact)
Iriani Setyaningsih
Safrina Dyah Hardiningtyas
FaustineD., SetyaningsihI., & HardiningtyasS. D. (2020). Depolimerisasi Kitosan Menggunakan Sinar Ultraviolet dan Katalis Asam Klorida: Depolymerization of chitosan with ultraviolet ray and chloride acid catalyst. Jurnal Pengolahan Hasil Perikanan Indonesia, 23(3), 412-422. https://doi.org/10.17844/jphpi.v23i3.31656

Article Details