Phosphorus Availability Affecting the Diversity of Arbuscular Mycorrhizal Fungi (AMF) in the Artisanal Gold Mining Area
Abstract
Arbuscular mycorrhizal fungi (AMF) diversity is influenced by biotic and abiotic factors. Several studies have shown the presence of AMF in ex-gold mining areas with low soil fertility and heavy metal accumulation. The purpose of this study was to analyze the diversity of AMF species in artisanal gold mining areas. The experimental design used is randomized group design with two treatment factors: the interval distance range from tailings disposal point (A) and the vegetation type (B). Interval distance treatment consisted of two levels (A1: 0-10 m and A2: 10-20 m). Vegetation type treatment (B) consists of three levels (B1: Theobroma cacao, B2: Mangifera indica, B3: Artocarpus heterophyllus). Some types of AMF spores found are Acaulospora sp. 1, Acaulospora sp. 2, Acaulospora sp. 3, Acaulospora sp. 4, and Acaulospora sp. 5. The index of species richness and diversity of AMF species in the artisanal gold mining area is low. The existence of AMF symbiosis with plants in artisanal gold mining areas is also indicated by the presence of colonization in the roots of T. cacao, M. indica, and A. heterophyllus with a low to medium category. Pearson correlation test results showed that AMF species diversity index and P availability were not correlated (r = -0.204, p-value = 0.699). Pearson correlation test results also show that AMF colonization and P availability are not correlated (r = -0.756, p-value = 0.082). Although not correlated, based on the graph, it can be seen that the higher the available P element, the smaller the index value of species diversity and AMF colonization.
References
Adyari, B., Supriatun, T., Rossiana, N., & Kramadibrata, K. (2021). Arbuscular mycorrhizae fungi and sustainability of artisanal gold mining waste disposal site revegetation. Ecodevelopment Journal, 4(2), 47–51. https://doi.org/10.24198/ecodev.v4i1.39135
Bainard, L. D., Dai, M., Gomez, E. F., Torres-Arias, Y., Bainard, J. D., Sheng, M., Eilers, W., & Hamel, C. (2014). Arbuscular mycorrhizal fungal communities are influenced by agricultural land use and not soil type among the Chernozem great groups of the Canadian Prairies. Plant and Soil, 387(1–2), 351–362. https://doi.org/10.1007/s11104-014-2288-1
Balzergue, C., Chabaud, M., Barker, D. G., Bécard, G., & Rochange, S. F. (2013). High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Frontiers in Plant Science, 4, 426. https://doi.org/10.3389/fpls.2013.00426
Brundrett, M., Bougher, N., Dell, B., Grove, T., & Malajczuk, N. (1996). Working with mycorrhizas in forestry and agriculture. The Australian Centre for International Agricultural Research (ACIAR).
Clapp, J. P., Fitter, A. H., & Merryweather, J. W. (1996). Arbuscular mycorrhizas. In G. S. Hall, P. Lasserre, & D. L. Hawksworth (Eds.), Methods for the examination of organismal diversity in soils and sediments (pp. 145161). CAB International.
Donkor, A. K., Bonzongo, J. C. J., Nartey, V. K., & Adotey, D. K. (2005). Heavy metals in sediments of the gold mining impacted Pra River basin, Ghana, West Africa. Soil and Sediment Contamination, 14(6), 479–503. https://doi.org/10.1080/15320380500263675
Eviati, & Sulaeman. (2009). Chemical analysis of soil, plants, water, and fertilize. Indonesian Soil Research Institut.
Husna. (2015). Potential of local arbuscular mycorrhizae fungi (AMF) in ex-situ conservation of endangered wood species [Pericopsis mooniana (Thw.) Thw.] [dissertation]. Bogor: IPB University.
Janeeshma, E., & Puthur, J. T. (2020). Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants. Archives of Microbiology, 202(1), 1–16. https://doi.org/10.1007/s00203-019-01730-z
Jayani, F. M., Budi, S. W., & Pamoengkas, P. (2018). Response of forest tree species inoculated with MycoSilvi and soil ameliorant addition grown in silica sand. Asian Journal of Agriculture and Biology, 6(4), 556–565.
Kurniawan, B., Duryat, Riniarti, M., & Yuwono, S. B. (2019). Kemampuan adaptasi tanaman mahoni (Swietenia macrophylla) terhadap cemaran merkuri pada tailing penambangan emas skala kecil. Jurnal Sylva Lestari, 7(3), 359–369. https://doi.org/10.23960/jsl37359-369
Lin, X., Feng, Y., Zhang, H., Chen, R., Wang, J., Zhang, J., & Chu, H. (2012). Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north China revealed by 454 pyrosequencing. Environmental Science and Technology, 46, 5764–5771. https://doi.org/10.1021/es3001695
Liu, W., Zhang, Y., Jiang, S., Deng, Y., Christie, P., & Murray, P. J. (2016). Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Scientific Reports, 6, 24902. https://doi.org/10.1038/srep24902
Ma, X., Xu, X., Geng, Q., Luo, Y., Ju, C., Li, Q., & Zhou, Y. (2023). Global arbuscular mycorrhizal fungal diversity and abundance decreases with soil available phosphorus. Global Ecology and Biogeography, 32(8), 1423–1434. https://doi.org/10.1111/geb.13704
Magurran, A. E. (2004). Measuring biological diversity. Blackwell Science.
Manoharachary, C., Kunwar, L., & Mukerji, K. (2002). Arbuscular mycorrhizal fungi - Identification, taxonomic criteria, classification, controversies and terminology. In K. Mukerji, C. Manoharachary, & B. Chamola (Eds.), Techniques in mycorrhizal studies (pp. 249–272). Kluwer Academic Publishers.
Miao, F., Wang, S., Yuan, Y., Chen, Y., Guo, E., & Li, Y. (2023). The addition of a high concentration of phosphorus reduces the diversity of arbuscular mycorrhizal fungi in temperate agroecosystems. Diversity, 15(10), 1045. https://doi.org/10.3390/d15101045
Montiel-Rozas, M. del M., López-García, Á., Madejón, P., & Madejón, E. (2017). Native soil organic matter as a decisive factor to determine the arbuscular mycorrhizal fungal community structure in contaminated soils. Biology and Fertility of Soils, 53(3), 327–338. https://doi.org/10.1007/s00374-017-1181-5
O’Connor, P. J., Smith, S. E., & Smith, F. A. (2001). Arbuscular mycorrhizal associations in the southern Simpson Desert. Australian Journal of Botany, 49(4), 493–499. https://doi.org/10.1071/BT00014
Ogola, J. S., Mitullah, W. V., & Omulo, M. A. (2002). Impact of gold mining on the environment and human health: A case study in the Migori Gold Belt, Kenya. Environmental Geochemistry and Health, 24(2), 141–157. https://doi.org/10.1023/A:1014207832471
Pacioni, G. (1992). 16 wet sieving and decanting techniques for the extraction of spores of vesicular-arbuscular mycorrhizal fungi. Method in Microbiology, 24, 317-322. https://doi.org/10.1016/S0580-9517(08)70099-0
Prasetyo, B., Krisnayanti, B. D., Utomo, W. H., & Anderson, C. W. N. (2010). Rehabilitation of artisanal mining gold land in West Lombok, Indonesia: 2. Arbuscular mycorrhiza status of tailings and surrounding soils. Journal of Agricultural Science, 2(2), 202–209. https://doi.org/10.5539/jas.v2n2p202
Rasmussen, P. U., Abrego, N., Roslin, T., Öpik, M., Sepp, S. K., Blanchet, F. G., Huotari, T., Hugerth, L. W., & Tack, A. J. M. (2022). Elevation and plant species identity jointly shape a diverse arbuscular mycorrhizal fungal community in the high arctic. New Phytologist, 236(2), 671–683. https://doi.org/10.1111/nph.18342
Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S. L., Morton, J. B., & Walker, C. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23(7), 515–531. https://doi.org/10.1007/s00572-013-0486-y
Schüßler, A., & Walker, C. (2010). The Glomeromycota. A species list with new families and new genera. The Royal Botanic Garden Kew. Retrieved from http://www.arbuscular-mycorrhiza.net/species_infos/higher_taxa/funneliformis_claroideoglomus_rhizophagus_redeckera.pdf
Shaw, G. R., Moore, D. P., & Garnett, C. (2009). Eutrophication and algal blooms. In A. Sabljic (Ed.), Environmemtal and ecological chemistry. Eolss Publisher.
Shi, J., Wang, X., & Wang, E. (2023). Mycorrhizal symbiosis in plant growth and stress adaptation: From genes to ecosystems. Annual Review of Plant Biology, 74, 569–607. https://doi.org/10.1146/annurev-arplant-061722-090342
Sideman, E. (2011). Managing soil phosphorus. Maine Organic Farmers and Gardeners. Retrieved from https://www.mofga.org/resources/soil/phosphorus/
Silva, J. A., & Uchida, R. S. (2000). Essential nutrients for plant growth. In J. A. Silva & R. S. Uchida (Eds.), Plant nutrient management in Hawaii’s soils, approaches for tropical and subtropical agriculture (pp. 31–55). College of Tropical Agriculture and Human Resources (CTAHR).
Smith, S. E., & Read, D. (2008). Mycorrhizal symbiosis (3rd ed.). Elsevier. https://doi.org/10.1016/B978-0-12-370526-6.X5001-6
Spruyt, A., Buck, M. T., Mia, A., & Straker, C. J. (2014). Arbuscular mycorrhiza (AM) status of rehabilitation plants of mine wastes in South Africa and determination of AM fungal diversity by analysis of the small subunit rRNA gene sequences. South African Journal of Botany, 94, 231–237. https://doi.org/10.1016/j.sajb.2014.07.006
Suharno, Sancayaningsih, R. P., Soetarto, E. S., & Kasiamdari, R. S. (2014). The presence of arbuscular mycorrhizal fungi in the tailings of mining gold Timika as an attempt of environmentally friendly land rehabilitation. Journal of People and Environment, 21(3), 295–303.
Suharno, Soetarto, E. S., Sancayaningsih, R. P., & Kasiamdari, R. S. (2017). Association of arbuscular mycorrhizal fungi (AMF) with Brachiaria precumbens (Poaceae) in tailing and its potential to increase the growth of maize (Zea mays). Biodiversitas, 18(1), 433–441. https://doi.org/10.13057/biodiv/d180157
Tanzito, G., Ibanda, P. A., Ocan, D., & Lejoly, J. (2020). Use of charcoal (biochar) to enhance tropical soil fertility: A case of Masako in Democratic Republic of Congo. Journal of Soil Science and Environmental Management, 11(1), 17–29. https://doi.org/10.5897/jssem2019.0798
Tawaraya, K. (2022). Response of mycorrhizal symbiosis to phosphorus and its application for sustainable crop production and remediation of environment. Soil Science and Plant Nutrition, 68(2), 241–245. https://doi.org/10.1080/00380768.2022.2032335
Tian, H., Drijber, R. A., Niu, X. S., Zhang, J. L., & Li, X. L. (2011). Spatio-temporal dynamics of an indigenous arbuscular mycorrhizal fungal community in an intensively managed maize agroecosystem in North China. Applied Soil Ecology, 47(3), 141–152. https://doi.org/10.1016/j.apsoil.2011.01.002
Tuheteru, E. J., Tuheteru, F. D., Hartami, P. N., Burhannudinnur, M., Prakoso, S., Husna, Albasri, & Asraria, D. (2023). Soil properties change, and arbuscular mycorrhizal fungi associated with plants growing on the post-gold mining land of Bombana, Indonesia. Journal of Degraded and Mining Lands Management, 11(1), 4863–4873. https://doi.org/10.15243/jdmlm.2023.111.4863
Tuheteru, F. D., Husna, Albasri, Arif, A., Kramadibrata, K., & Soka, G. (2020). Composition and diversity of arbuscular mycorrhizal fungi spore associated with different land-use types in tropical gold mine. Journal of Degraded and Mining Lands Management, 8(1), 2502–2458. https://doi.org/10.15243/jdmlm.2020.081.2503
Vierheilig, H. (2004). Regulatory mechanisms during the plant-Arbuscular mycorrhizal fungus interaction. Canadian Journal of Botany, 82(8), 1166–1176. https://doi.org/10.1139/B04-015
Weil, R. R., & Brady, N. C. (2017). Soil phosphorus and potassium. In R. R. Weil, & N. C. Brady (Eds.), The nature and properties of soils (pp. 643–695). Pearson.
Yuwono, S. B., Banuwa, I. S., Suryono, N., Somura, H., & Dermiyati. (2023). Mercury pollution in the soil and river water of the Ratai watershed by artisanal and small-scale gold mining activities in Pesawaran District, Lampung, Indonesia. Journal of Degraded and Mining Lands Management, 10(2), 4233–4243. https://doi.org/10.15243/jdmlm.2023.102.4233
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Manajemen Hutan Tropika is an open access journal which means that all contents is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the Budapest Open Access Initiative (BOAI) definition of open access.