Agroforestry Land Use Land Cover Area Classification Using Decision Tree Algorithm
Abstract
Monitoring the location and extent of agroforestry land use land cover (LULC) in Lampung Province is critical for effective policy development and sustainable agroforestry management. However, existing monitoring efforts have been limited to small regions. This study addressed this gap by employing threshold values from five distinct vegetation indices (ARVI, EVI, GDVI, NDVI, and SAVI) derived from Landsat 9 OLI imagery to accurately identify and estimate agroforestry LULC across the Lampung Province. The data collection activities were carried out using a combination of Landsat 9 OLI satellite imagery acquisition, and ground truth validation on 7 classes of different land use (forest, agroforestry, dry land farming, ricefield, settlements, bare land, and water bodies) within 5,600 points of interest (POI) inside 5 regencies as an area of interest (AOI). This study aimed to predict agroforestry area based on vegetation indices (VIs) threshold using the decision tree (DT) algorithm. The research process involved a series of systematic steps, beginning with satellite image data acquisition and preprocessing, VIs values extraction, and DT sequential for agroforestry areas. The DT computation incorporated the value of each LULC type on the 5 VIs. The result showed that the overall accuracy reached 91.59% with a Kappa coefficient of 0.89, indicating a high level of accuracy for land cover identification. The DT algorithm calculation showed that the agroforestry in Lampung Province estimated spanned for 734,739.61 ha, determined only by NDVI and ARVI. The findings have significant implications for both policy development and agroforestry management. Accurate LULC classification enhances decision-making processes by providing reliable data on land use patterns, which can guide sustainable land management practices and support the creation of region-specific agroforestry policies. This research directly informs policymakers on the extent and distribution of agroforestry areas, offering a foundation for crafting strategies aimed at promoting sustainable land use while mitigating environmental degradation. The methodology also provides a scalable approach for other regions facing similar agroforestry and land management challenges.
References
Afifah, F. A. N., Febryano, I. G., Santoso, T., and Darmawan, A. 2021. Identifikasi perubahan penggunaan lahan agroforestri di Pulau Pahawang. Journal of Tropical Marine Science 4(1): 1–8.
Akmal, R. R., Winarno, G. D., and Santoso, T. 2021. Pemetaan Jalur Interpretasi Ekowisata Di Desa Pahmungan, Kabupaten Pesisir Barat. Jurnal Hutan Tropis Fakultas Kehutanan Universitas Lambung Mangkurat 9(1): 173–180.
Alhabsyi, T., Bempah, I., and Tolinggi, W. K. 2020. Analisis Implementasi Kebijakan Pemerintah Daerah Terhadap Penggunaan Lahan Sistem Agroforestri Di Kecamatan Suwawa Selatan Kabupaten Bone Bolango. AGRINESIA: Jurnal Ilmiah Agribisnis 4(2): 118–126.
Alraey, Y. 2022. Distribution and epidemiological features of cutaneous leishmaniasis in Asir Province, Saudi Arabia, from 2011 to 2020. Journal of Infection and Public Health Elsevier 15(7): 757–765.
Anyanwu, M. N., and Shiva, S. G. 2009. Comparative Analysis of Serial Decision Tree Classification Algorithms. International Journal of Computer Science and Security Citeseer 3(3): 230–240.
Ardiansyah, M., Nugroho, B., and Al-Fajar, A. 2022. Respon Spektral Tajuk Jagung pada beberapa Perlakuan Pemupukan. Jurnal Ilmu Tanah dan Lingkungan 24(1): 25–31. https://doi.org/10.29244/jitl.24.1.25-31
Aryal, D. R., Corzo, R. R., Cruz, A. L., Sanabria, C. V., Castro, H. G., Hernández, F. G., Ruiz, R. P., Venegas, J. A. V., Coss, A. L. de, Ruiz, D. M., and Chi, I. E. 2018. Biomass Accumulation in Forests With High Pressure of Fuelwood Extraction in Chiapas, Mexico. Revista Árvore 42(3). https://doi.org/10.1590/1806-90882018000300007
Benharrats, F., and Mahi, H. 2020. Surface solar radiation modeling from landsat 8 OLI/TIRS satellite data. in: 2020 5th International Conference on Renewable Energies for Developing Countries, REDEC 2020 IEEE 1–4. https://doi.org/10.1109/REDEC49234.2020.9163851
Berhane, T. M., Lane, C. R., Wu, Q., Autrey, B. C., Anenkhonov, O. A., Chepinoga, V. V., and Liu, H. 2018. Decision-tree, rule-based, and random forest classification of high-resolution multispectral imagery for wetland mapping and inventory. Remote Sensing MDPI 10(4): 580. https://doi.org/10.3390/rs10040580
Binte Mostafiz, R., Noguchi, R., and Ahamed, T. 2021. Agricultural land suitability assessment using satellite remote sensing-derived soil-vegetation indices. Land MDPI 10(2): 1–26. https://doi.org/10.3390/land10020223
BPS Provinsi Lampung. 2023. Lampung dalam angka 2023. Lampung dalam angka 2023 (BPS Provinsi Lampung, ed.) Sudiyanto, Bandar Lampung.
Brel, O. A., Zaytseva, A. I., Kaizer, P. J., and Migal, A. S. 2022. Spatial Organization Of Industrial Tourism Objects: Case Of The Kemerovo Region-Kuzbass. Geo Journal of Tourism and Geosites University of Oradea, Department of Geography, Tourism and Territorial Planning 44(4): 1306–1311.
Cabrera, E., Galindo, G., González, J., Vergara, L., Forero, C., Cubillos, A., Espejo, J., Rubiano, J., Corredor, X., Hurtado, L., Vargas, D., and Duque, A. 2020. Colombian Forest Monitoring System: Assessing Deforestation in an Environmental Complex Country. Forest Degradation Around the World IntechOpen. https://doi.org/10.5772/intechopen.86143
Camacho Olmedo, M. T., and García-Álvarez, D. 2022. Basic and Multiple-Resolution Cross-Tabulation to Validate Land Use Cover Maps. in: Land Use Cover Datasets and Validation Tools Springer International Publishing Cham 99–125. https://doi.org/10.1007/978-3-030-90998-7_7
Congedo, L. 2021. Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software 6(64): 3172.
Czajkowski, M., and Kretowski, M. 2019. Decision tree underfitting in mining of gene expression data. An evolutionary multi-test tree approach. Expert Systems with Applications Elsevier 137: 392–404. https://doi.org/10.1016/j.eswa.2019.07.019
Damayanti, D. R., Bintoro, A., and Santoso, T. 2017. Permudaan Alami Hutan Di Satuan Pengelolaan Taman Nasional (Sptn ) Wilayah Iii Kuala Penet Taman Nasional Way Kambas. Jurnal Sylva Lestari U. 5(1): 92–104.
Derajat, R. M., Sopariah, Y., Aprilianti, S., Candra Taruna, A., Rahmawan Tisna, H. A., Ridwana, R., and Sugandi, D. 2020. Klasifikasi Tutupan Lahan Menggunakan Citra Landsat 8 Operational Land Imager (OLI) di Kecamatan Pangandaran. Jurnal Samudra Geografi 3(1): 1–10. https://doi.org/10.33059/jsg.v3i1.1985
Dogru, A. O., Goksel, C., David, R. M., Tolunay, D., Sözen, S., and Orhon, D. 2020. Detrimental environmental impact of large scale land use through deforestation and deterioration of carbon balance in Istanbul Northern Forest Area. Environmental Earth Sciences Springer 79(11): 1–13.
Gama-Rodrigues, A. C., Müller, M. W., Gama-Rodrigues, E. F., and Mendes, F. A. T. 2021. Cacao-based agroforestry systems in the Atlantic Forest and Amazon Biomes: An ecoregional analysis of land use. Agricultural Systems Elsevier 194: 103270.
Gao, Y., Liu, L., Zhang, X., Chen, X., Mi, J., and Xie, S. 2020. Consistency analysis and accuracy assessment of three global 30‐m land‐cover products over the european union using the lucas dataset. Remote Sensing MDPI 12(21): 1–23. https://doi.org/10.3390/rs12213479
Gosling, E., Reith, E., Knoke, T., Gerique, A., and Paul, C. 2020. Exploring farmer perceptions of agroforestry via multi-objective optimisation: a test application in Eastern Panama. Agroforestry Systems Springer 94(5): 2003–2020. https://doi.org/https://doi.org/10.1007/s10457-020-00519-0
Guerini Filho, M., Kuplich, T. M., and Quadros, F. L. F. D. 2020. Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data. International Journal of Remote Sensing Taylor & Francis 41(8): 2861–2876. https://doi.org/10.1080/01431161.2019.1697004
Harianto, S. P., Surnayanti, S., Tsani, M. K., and Santoso, T. 2022. Utilizing market waste to create organic waste in Teluk Pandan, Pesawaran. Community Empowerment 7(11): 1873–1880.
Hidayati, I. N., Suharyadi, R., and Danoedoro, P. 2019. Exploring spectral index band and vegetation indices for estimating vegetation area. Indonesian Journal of Geography Universitas Gadjah Mada, Faculty of Geography 50(2): 211–221. https://doi.org/10.22146/ijg.38981
Huang, H. G., and Lian, J. 2015. A 3D approach to reconstruct continuous optical images using lidar and modis. Forest Ecosystems Forest Ecosystems 2(1): 0–12. DOI: 10.1186/s40663-015-0044-5
Huang, S., Tang, L., Hupy, J. P., Wang, Y., and Shao, G. 2021. Correction to: Commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing (Journal of Forestry Research, (2021), 32, 1, (1-6), 10.1007/s11676-020-01155-1). Journal of Forestry Research Springer 32(6): 2719. DOI: 10.1007/s11676-020-01176-w
Huete, A. R. 1988. A soil-adjusted vegetation index (SAVI). Remote sensing of environment Elsevier 25(3): 295–309.
Jaya, I. N. S., and Etyarsah, S. 2021. Analisis Citra Digital Perspektif Penginderaan Jauh untuk Pengelolaan Sumber Daya Alam. PT Penerbit IPB Press.
Jezeer, R. E., Santos, M. J., Verweij, P. A., Boot, R. G. A., and Clough, Y. 2019. Benefits for multiple ecosystem services in Peruvian coffee agroforestry systems without reducing yield. Ecosystem services Elsevier 40: 101033.
Jorge, J., Vallbé, M., and Soler, J. A. 2019. Detection of irrigation inhomogeneities in an olive grove using the NDRE vegetation index obtained from UAV images. European Journal of Remote Sensing Taylor &Francis 52(1): 169–177. https://doi.org/10.1080/22797254.2019.1572459
Kakati, R., Dwivedy, S. K., and Dutta, S. 2023. Development of a Fully Automated Atmospheric Correction Technique for Applications in Google Earth Engine. in: International Conference on River Corridor Research and Management Springer 337–348. https://doi.org/0.1007/978-981-99-4423-1_24
Kaufman, Y. J., and Tanré, D. 1992. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing IEEE 30(2): 261–270. https://doi.org/10.1109/36.134076
Lacaze, B., Dudek, J., and Picard, J. 2018. GRASS GIS Software with QGIS. QGIS and Generic Tools Wiley Online Library 1: 67–106. https://doi.org/10.1002/9781119457091.ch3
Langhe, S., Herbei, M. V, and Sala, F. 2020. Use of Remote Sensing Images in Crop Monitoring Case Study : Soybean Crop. Research Journal of Agricultural Science rjas.ro.
Leroux, L., Congedo, L., Bellón, B., Gaetano, R., and Bégué, A. 2018. Land Cover Mapping Using Sentinel-2 Images and the Semi-Automatic Classification Plugin: A Northern Burkina Faso Case Study. QGIS and Applications in Agriculture and Forest Wiley Online Library 2: 119–151. https://doi.org/10.1002/9781119457107.ch4
Li, X., Hu, T., Gong, P., Du, S., Chen, B., Li, X., and Dai, Q. 2021. Mapping essential urban land use categories in Beijing with a fast area of interest (AOI)-based method. Remote Sensing MDPI 13(3): 477.
Liu, J., Zhang, J., Zhang, D., Jiao, S., Xing, J., Tang, H., Zhang, Y., Li, S., Zhou, Z., and Zuo, J. 2020. Sub-ambient radiative cooling with wind cover. Renewable and Sustainable Energy Reviews Elsevier Ltd 130(July 2019): 109935. https://doi.org/10.1016/j.rser.2020.109935
Logsdon, M. G., Bell, E. J., and Westerlund, F. V. 1996. Probability mapping of land use change: A GIS interface for visualizing transition probabilities. Computers, Environment and Urban Systems Elsevier 20(6): 389–398.
Maponya, P., Madakadze, C., Mbili, N., Dube, Z., Nkuna, T., Makhwedzhana, M., Tahulela, T., and Mongwaketsi, K. 2021. Potential Constraint of Rainfall Availability on the Establishment and Expansion of Agroforestry in the Mopani District, Limpopo Province in South Africa. Agrofor 6(1). https://doi.org/10.7251/agreng2101026m
Markham, B. L., Jenstrom, D., Masek, J. G., Dabney, P., Pedelty, J. A., Barsi, J. A., and Montanaro, M. 2016. Landsat 9: Status and plans. in: Earth Observing Systems XXI SPIE 127–132.
Masek, J. G., Wulder, M. A., Markham, B., McCorkel, J., Crawford, C. J., Storey, J., and Jenstrom, D. T. 2020. Landsat 9: Empowering open science and applications through continuity. Remote Sensing of Environment Elsevier 248: 111968. https://doi.org/10.1016/j.rse.2020.111968
Maxwell, A. E., Warner, T. A., and Guillén, L. A. 2021. Accuracy assessment in convolutional neural network-based deep learning remote sensing studies—part 2: Recommendations and best practices. Remote Sensing MDPI 13(13): 2450. https://doi.org/10.3390/rs13132591
Miller, G. J., Morris, J. T., and Wang, C. 2019. Estimating aboveground biomass and its spatial distribution in coastal wetlands utilizing planet multispectral imagery. Remote Sensing mdpi.com 11(17). https://doi.org/10.3390/rs11172020
Minister of Environment And Forestry. 2021. Peraturan Menteri Lingkungan Hidup dan Kehutanan Nomor 27 Tahun 2021 tentang Indeks Kualitas Lingkungan Hidup. Sekretariat Negara Republik Indonesia 10–27.
Mishra, V. N., Kumar, V., Prasad, R., and Punia, M. 2021. Geographically Weighted Method Integrated with Logistic Regression for Analyzing Spatially Varying Accuracy Measures of Remote Sensing Image Classification. Journal of the Indian Society of Remote Sensing Springer 49(5): 1189–1199. https://doi.org/10.1007/s12524-020-01286-2
Mountrakis, G., Im, J., and Ogole, C. 2011. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing Elsevier 66(3): 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001
Musiaka, Ł., and Nalej, M. 2021. Application of gis tools in the measurement analysis of urban spatial layouts using the square grid method. ISPRS International Journal of Geo-Information Multidisciplinary Digital Publishing Institute 10(8): 558. https://doi.org/10.3390/ijgi10080558
Narendra, B. H., Siregar, C. A., Turjaman, M., Hidayat, A., Rachmat, H. H., Mulyanto, B., Maharani, R., Rayadin, Y., Prayudyaningsih, R., and Yuwati, T. W. 2021. Managing and reforesting degraded post-mining landscape in Indonesia: A Review. Land MDPI 10(6): 658.
Niraj, K. C., Gupta, S. K., and Shukla, D. P. 2022. A Comparison of Image-Based and Physics-Based Atmospheric Correction Methods for Extracting Snow and Vegetation Cover in Nepal Himalayas Using Landsat 8 OLI Images. Journal of the Indian Society of Remote Sensing Springer 50(12): 2503–2521. https://doi.org/10.1007/s12524-022-01616-6
Octavia, D., Suharti, S., Murniati, Dharmawan, I. W. S., Nugroho, H. Y. S. H., Supriyanto, B., Rohadi, D., Njurumana, G. N., Yeny, I., Hani, A., Mindawati, N., Suratman, Adalina, Y., Prameswari, D., Hadi, E. E. W., and Ekawati, S. 2022. Mainstreaming Smart Agroforestry for Social Forestry Implementation to Support Sustainable Development Goals in Indonesia: A Review. Sustainability (Switzerland) MDPI 14(15): 9313. https://doi.org/10.3390/su14159313
Oon, A., Mohd Shafri, H. Z., Lechner, A. M., and Azhar, B. 2019. Discriminating between large-scale oil palm plantations and smallholdings on tropical peatlands using vegetation indices and supervised classification of LANDSAT-8. International Journal of Remote Sensing Taylor & Francis 40(19): 7312–7328. https://doi.org/10.1080/01431161.2019.1579944
Pahleviannur, M. R. 2019. Pemanfaatan Informasi Geospasial Melalui Interpretasi Citra Digital Penginderaan Jauh untuk Monitoring Perubahan Penggunaan Lahan. JPIG (Jurnal Pendidikan dan Ilmu Geografi) 4(2): 18–26. https://doi.org/10.21067/jpig.v4i2.3267
Passy, P., and Théry, S. 2018. The Use of SAGA GIS Modules in QGIS. QGIS and Generic Tools Wiley Online Library 1: 107–149. https://doi.org/10.1002/9781119457091.ch4
Pôças, I., Calera, A., Campos, I., and Cunha, M. 2020. Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches. Agricultural Water Management Elsevier 233: 106081. https://doi.org/10.1016/j.agwat.2020.106081
Prasetya, A. Y., Qurniati, R., and Herwanti, S. 2020. Saluran Dan Margin Pemasaran Durian Hasil Agroforestri Di Desa Sidodadi. Jurnal Belantara 3(1): 32. https://doi.org/10.29303/jbl.v3i1.315
Rahma, I. Y. 2020. Analisis Komparasi Metode Pemetaan Ekosistem Mangrove Menggunakan Penginderaan Jauh dan Sistem Informasi Geografis. Jurnal Geografi : Media Informasi Pengembangan dan Profesi Kegeografian 17(2): 49–55. https://doi.org/10.15294/jg.v17i2.24417
Romli, K., Oktaviannur, M., Rinova, D., and Dharmawan, Y. Y. 2019. Analysis of Tourism Mapping in Lampung Province to Optimize Entrepreneurship Development. Review of Integrative Business and Economics Research Society of Interdisciplinary Business Research 8(December): 110.
Rouse, J. W. jr, Haas, R. H., Deering, D. W., Schell, J. A., and Harlan, J. C. 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation.
Roy, B. 2021. Optimum machine learning algorithm selection for forecasting vegetation indices: MODIS NDVI & EVI. Remote Sensing Applications: Society and Environment Elsevier 23: 100582. https://doi.org/10.1016/j.rsase.2021.100582
Rwanga, S. S., and Ndambuki, J. M. 2017. Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences Scientific Research Publishing 8(04): 611.
Sampurno, R., and Thoriq, A. 2016. Klasifikasi Tutupan Lahan Menggunakan Citra Landsat 8 Operational Land Imager (Oli) Di Kabupaten Sumedang. Jurnal Teknotan 10(2): 61–70. https://doi.org/10.24198/jt.vol10n2.9
Santoso, T., Kartika, M., Surnayati, S., and Riniarti, M. 2021. Penggunaan Citra DEMNAS untuk Desain Pola Tanam Alley Cropping pada Lahan Garapan Anggota KPPH Talang Mulya Kabupaten Pesawaran Provinsi Lampung. ULIN: Jurnal Hutan Tropis 5(1): 33. https://doi.org/10.32522/ujht.v5i1.4390
Santoso, T., Paridduar, R., and Bintoro, A. 2023. Plant diversity under traditional agroforestry system of repong damar in Pesisir Barat District, Lampung Province, Indonesia. Biodiversitas 24(8): 4675–4684. https://doi.org/10.13057/biodiv/d240849
Sari, R., Trihardianingsih, L., Mulya, R. F., Arief, M. I., and Kusrini, K. 2022. Analisis Index Vegetation Wilayah Terdampak Kebakaran Hutan Riau Menggunakan Citra Landsat-8 dan Sentinel-2. CogITo Smart Journal 8(2): 282–294.
Saufi, S., and Saleh, M. 2021. Analisis Karakteristik Masyarakat Agroforestri Tanaman Sengon di Hutan Produksi Wilayah KPH Cantung. JIEP: Jurnal Ilmu Ekonomi dan Pembangunan 4(2): 476. https://doi.org/10.20527/jiep.v4i2.4404
Setiawan, K. T., Winarso, G., Ginting, D. N. B., Manessa, M., Anggraini, N., Hartuti, M., Asriningrum, W., and Parwati, E. 2021. Pemanfaatan Metode Semi-Analitik Untuk Penentuan Batimetri Menggunakan Citra Satelit Resolusi Tinggi. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital 18(1): 1–13.
Setiawan, Y., Yoshino, K., and Philpot, W. D. 2013. Characterizing temporal vegetation dynamics of land use in regional scale of Java Island, Indonesia. Journal of Land Use Science Taylor & Francis 8(1): 1–30. https://doi.org/10.1080/1747423X.2011.605178
Shinskie, J. L., Delahunty, T., and Pitt, A. L. 2023. Fine‐scale accuracy assessment of the 2016 National Land Cover Dataset for stream‐based wildlife habitat. The Journal of Wildlife Management Wiley Online Library e22402.
Shishir, S., and Tsuyuzaki, S. 2018. Hierarchical classification of land use types using multiple vegetation indices to measure the effects of urbanization. Environmental Monitoring and Assessment Springer 190(6): 1–15. https://doi.org/10.1007/s10661-018-6714-3
Sholihah, R. I., Trisasongko, B. H., Shiddiq, D., Iman, L. O. S., Kusdaryanto, S., Manijo, and Panuju, D. R. 2016. Identification of Agricultural Drought Extent Based on Vegetation Health Indices of Landsat Data: Case of Subang and Karawang, Indonesia. Procedia Environmental Sciences Elsevier 33: 14–20. https://doi.org/10.1016/j.proenv.2016.03.051
Somvanshi, S. S., and Kumari, M. 2020. Comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using sentinel data. Applied Computing and Geosciences Elsevier 7: 100032. DOI: 10.1016/j.acags.2020.100032
Song, N., Sun, Q., Xu, S., Shan, D., Tang, Y., Tian, X., Xu, N., and Gao, J. 2023. Ultrawide-band optically transparent antidiffraction metamaterial absorber with a Thiessen-polygon metal-mesh shielding layer. Photonics Research Optica Publishing Group 11(7): 1354. https://doi.org/0.1364/prj.486613
Stockwell, D., and Peters, D. 1999. The GARP modelling system: Problems and solutions to automated spatial prediction. International Journal of Geographical Information Science Taylor & Francis 13(2): 143–158. https://doi.org/10.1080/136588199241391
Szufa, S., Piersa, P., Junga, R., Błaszczuk, A., Modliński, N., Sobek, S., Marczak-Grzesik, M., Adrian, Ł., and Dzikuć, M. 2023. Numerical modeling of the co-firing process of an in situ steam-torrefied biomass with coal in a 230 MW industrial-scale boiler. Energy Elsevier 263: 125918. https://doi.org/10.1016/j.energy.2022.125918
Tschora, H., and Cherubini, F. 2020. Co-benefits and trade-offs of agroforestry for climate change mitigation and other sustainability goals in West Africa. Global Ecology and Conservation Elsevier 22: e00919.
Tsendbazar, N., Herold, M., Li, L., Tarko, A., de Bruin, S., Masiliunas, D., Lesiv, M., Fritz, S., Buchhorn, M., Smets, B., Van De Kerchove, R., and Duerauer, M. 2021. Towards operational validation of annual global land cover maps. Remote Sensing of Environment Elsevier 266: 112686. https://doi.org/10.1016/j.rse.2021.112686
Viera, A. J., and Garrett, J. M. 2005. Understanding interobserver agreement: the kappa statistic. Fam med 37(5): 360–363.
Visnhu, B. G. 2021. Diversifikasi Olahan Ubi Kayu sebagai Potensi Desa Sidomulyo dan Penanaman Ubi Kayu dengan Metode Tumpang Sari. Jurnal Atma Inovasia 1(1): 8–13. https://doi.org/10.24002/jai.v1i1.3905
Vitalis, S., Arroyo Ohori, K., and Stoter, J. 2020. CityJSON in QGIS: Development of an open-source plugin. Transactions in GIS Wiley Online Library 24(5): 1147–1164. https://doi.org/10.1111/tgis.12657
van Vliet, J., Bregt, A. K., Brown, D. G., van Delden, H., Heckbert, S., and Verburg, P. H. 2016. A review of current calibration and validation practices in land-change modeling. Environmental Modelling and Software Elsevier 82: 174–182. DOI: 10.1016/j.envsoft.2016.04.017
Vorovencii, I. 2021. Changes detected in the extent of surface mining and reclamation using multitemporal Landsat imagery: a case study of Jiu Valley, Romania. Environmental Monitoring and Assessment Springer 193(1). DOI: 10.1007/s10661-020-08834-w
Wan, H., Shao, Y., Campbell, J. B., and Deng, X. 2019. Mapping annual urban change using time series Landsat and NLCD. Photogrammetric Engineering & Remote Sensing American Society for Photogrammetry and Remote Sensing 85(10): 715–724.
Wanderi, W., Qurniati, R., and Kaskoyo, H. 2019. Kontribusi Tanaman Agroforestri terhadap Pendapatan dan Kesejahteraan Petani. Jurnal Sylva Lestari 7(1): 118. https://doi.org/10.23960/jsl17118-127
Warren‐Thomas, E., Nelson, L., Juthong, W., Bumrungsri, S., Brattström, O., Stroesser, L., Chambon, B., Penot, É., Tongkaemkaew, U., and Edwards, D. P. 2020. Rubber agroforestry in Thailand provides some biodiversity benefits without reducing yields. Journal of Applied Ecology Wiley Online Library 57(1): 17–30.
Wu, W. 2014. The Generalized Difference Vegetation Index (GDVI) for dryland characterization. Remote Sensing 6(2): 1211–1233. DOI: 10.3390/rs6021211
Wu, Z., Snyder, G., Vadnais, C., Arora, R., Babcock, M., Stensaas, G., Doucette, P., and Newman, T. 2019. User needs for future Landsat missions. Remote Sensing of Environment Elsevier 231: 111214.
Xie, F., and Fan, H. 2021. Deriving drought indices from MODIS vegetation indices (NDVI/EVI) and Land Surface Temperature (LST): Is data reconstruction necessary? International Journal of Applied Earth Observation and Geoinformation Elsevier 101: 102352. DOI: 10.1016/j.jag.2021.102352
Xu, Y., Wang, L., Fu, C., and Kosmyna, T. 2017. A fishnet-constrained land use mix index derived from remotely sensed data. Annals of GIS Taylor & Francis 23(4): 303–313. DOI: 10.1080/19475683.2017.1382570
Yadav, S. K., and Pal, S. 2012. Data mining: A prediction for performance improvement of engineering students using classification. arXiv preprint arXiv:1203.3832.
Zeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., Chen, J. M., Joiner, J., Frankenberg, C., Bond-Lamberty, B., Ryu, Y., Xiao, J., Asrar, G. R., and Chen, M. 2022. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nature Reviews Earth and Environment Nature Publishing Group UK London 3(7): 477–493. DOI: 10.1038/s43017-022-00298-5
Zhao, H., Xu, L., Wang, Q., Tian, J., Tang, X., Tang, Z., Xie, Z., He, N., and Yu, G. 2018. Spatial patterns and environmental factors influencing leaf carbon content in the forests and shrublands of China. Journal of Geographical Sciences 28(6): 791–801. https://doi.org/10.1007/s11442-018-1505-x
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S., Peuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N. 2016. Greening of the Earth and its drivers. Nature Climate Change Nature Publishing Group 6(8): 791–795. https://doi.org/10.1038/nclimate3004
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Manajemen Hutan Tropika is an open access journal which means that all contents is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the Budapest Open Access Initiative (BOAI) definition of open access.