The Influence of Land Management on Soil Mite (Acari: Oribatida, Prostigmata, and Mesostigmata) Communities as Bioindicators for Environmental Conditions
Abstract
As a soil-living organism, soil mite presence is important for ensuring the sustainable land. Intensive management practices in forest land drive a change in its community structure. A field study was conducted in Wanagama Education and Research Forest I, Gunungkidul District, Yogyakarta Special Region Province, Indonesia, to assess the role and impact of the different forest management practices on the soil mite community. Soil samples from 15 representative soil sites were taken from the agroforestry, mixed-forest, and pioneer community forest. Collected individuals from August to October 2021 were taken by Berlese-Tullgenn Funnel and identified to morphospecies level. A total of 758 individuals of soil mites were recorded during the study period. Out of these, 21 individuals from agroforestry, 288 individuals from mixed-forest, and 449 individuals from pioneer community forest. Results of the study revealed the occurrence of 3 taxa from 36 morphospecies of oribatid mites occurred in the areas. The Shannon diversity indices of oribatid mites were 1.831, 1.424, and 0.867 in mixed-forest, agroforestry, and pioneer community, respectively. The similarity indices showed there was a similar diversity in agroforestry and mixed-forest, either in pioneer community. Through one-way ANOVA analysis, we stated that differences between of three management practices significantly affected soil mites, especially oribatida rather than prostigmata and mesostigmata.
References
Anwar, E. K., & Ginting, R. C. B. (2013). Mengenal fauna tanah dan cara identifikasinya. Jakarta: IAAD Press.
Austin, A. T., Vivanco, L., Gonzalez-Arzac, A., & Perez, L. I. (2014). There’s no place like home? An exploration of the mechanisms behind plant litter-decomposer affinity in terrestrial ecosystesms. New Phytologist, 204, 307–314. https://doi.org/10.1111/nph.12959
Bolger, T., Arroyo J., Kenny J., & Caplice, M. (2014). Hierarchical analysis of mite community structures in Irish forests-A study of the relative contribution of location, forest type and microhabitat, Applied Soil Ecology, 83, 39–43. https://doi.org/10.1016/j.apsoil.2013.06.004
Carney, K. M. & Matson, P. A. (2006). The influence of tropical plant diversity and composition on soil microbial communities. Microbial Ecology, 52, 226–238. https://doi.org/10.1007/s00248-006-9115-z
Castro-Huerta, R. A., Falco, L. B., Sandler, R. V., & Coviella, C. E. (2015). Differential contribution of soil biota groups to plant litter decomposition as mediated by soil use. PeerJ, 3, e826. https://doi.org/10.7717/peerj.826
Chapman, T. C., McPhee, J. E., Dean, G., & Corkrey, R. (2023). Soil arthropod responses to subsoil manuring in irrigated vegetable and rainfed graind production. Soil and Tillage Research, 227, 105600. https://doi.org/10.1016/j.still.2022.105600
Coleman, D. C., Callaham, M., & Crossley Jr, D. A. (2017) Fundamentals of soil ecology. London: Academic press.
Crotty, F. V., Fychan, R., Sanderson, R., Rhymes, J. R., Bourdin, F., Scullion, J., & Marley, C. L. (2016). Understanding the legacy effect of previous forage crop and tillage management on soil biology, after conversion to an arable crop rotation. Soil Biology & Biochemistry, 103, 241–252. https://doi.org/10.1016/j.soilbio.2016.08.018
Damayanti, A., Triyogo, A., & Musyafa. (2023). Soil arthropod diversity in three different land management intensities of Wanagama Forest, Yogyakarta, Indonesia. Biodiversitas, 24(3), 1799–1808. https://doi.org/10.13057/biodiv/d240355
Dhooria, M. S. (2016). Soil mites. In Fundamentals of applied acarolog (pp. 197–206). Springer. https://doi.org/10.1007/978-981-10-1594-6_10
Doblas-Miranda, E., Pino, J., & Espelta, J. M. (2021). Connectivity affects species turnover in soil microarthropod communities during Mediterranean forest establishment. Ecoshpere, 12(12), e3865. https://doi.org/10.1002/ecs2.3865
Eckert M. (2018). Conservation of ant (Formicidae) and springtail (Collembola) diversity in South African timber production landscapes [thesis]. South Africa: Stellenbosch University.
Farská, J., Prejzková, K., & Rusek, J. (2014). Management intensity affects traits of soil microarthropod community in montane spruce forest. Applied Soil Zoology, 75, 71–79. https://doi.org/10.1016/j.apsoil.2013.11.003
Fekkoun, S., Chebouti-Meziou, N., Slimani, I., Khettabi M., Ghezal H., & Elkawas H. M. (2021). Comparative study if the biodiversity of soil mites between two forests in eastern Algeria. Ukrainian Journal of Ecology, 11, 39–43. https://doi.org/10.15421/2021_292
Fiera, C., Ulrich, W., Popescu, D., Buchholz, J., Querner, P., Bunea, C. I., ..., & Zaller, J. G. (2020) Tillage intensity and herbicide application influence surface-active springtail (Collembola) communities in Romanian vineyards. Agriculture, Ecosystems & Environment, 300, 107006. https://doi.org/10.1016/j.agee.2020.107006
Frizzi, F., Masoni, A., Migliorini, M. M., Fanciulli, P. P., Cianferoni, F,, Balzani, P, ..., & Santini G. (2020). A comparative study of the fauna associated with nest mounds of native and introduced populations of the red wood ant Formica paralugubris. European Journal of Soil Biology, 101, 103241. https://doi.org/10.1016/j.ejsobi.2020.103241
Fujii, S. & Takeda, H. (2017). Succession of soil microarthropod communities during the aboveground and belowground litter decomposition processes. Soil Biology and Biochemistry, 110, 95–102. https://doi.org/10.1016/j.soilbio.2017.03.003
Gutiérrez-López, M., Ranera, E., Novo, M., Fernández, R., & Trigo, D. (2014). Does the invasion of the exotic tree Ailanthus altissima affect the soil arthropod community? The case of a riparian forest of the Henares River (Madrid). European Journal of Soil Biology, 62, 39–48. https://doi.org/10.1016/j.ejsobi.2014.02.010
Haneda, N. F., & Marfuah, N. T. (2013). Diversity of soil arthropods in teak plantation forest at Cepu, Blora, Central Java. Jurnal Manajemen Hutan Tropika, 19, 169–177. https://doi.org/10.7226/jtfm.19.3.169
Hansen, A. A., Chatterjee, A., Gramig, G., & Prischmann-Voldseth, D. A. (2018). Weed and insect management alter soil arthropod densities, soil nutrient availability, plant productivity, and aphid densities in an annual legume cropping system. Applied Soil Ecology, 130, 120–133. https://doi.org/10.1016/j.apsoil.2018.06.006
Hasegawa, M., Okabe, K., Fukuyama, K., Makino, S. I., Okochi, I., Tanaka, H., ..., & Sakata, T. (2013). Community structures of Mesostigmata, Prostigmata and Oribatida in broad-leaved regeneration forests and conifer plantations of various ages. Experimental and Applied Acarology, 59, 391–408. https://doi.org/10.1007/s10493-012-9618-x
Hasegawa, M., Ota, A. T., Kabeya, D., Okamoto, T., Saitoh, T., & Nishiyama, Y. (2014). The effects of mixed broad-leaves trees on the collembolan community in larch plantations of central Japan. Applied Soil Ecology, 83, 125–132. https://doi.org/10.1016/j/apsoil.2013.06.005
Hooper, D. I. & Vitousek, P. M. (1997). The effect of plant composition and diversity on ecosystem processes. Science, 277, 1302–1305. https://doi.org/10.1126/science.277.5330.1302
Ihsan, M., Puspitarini R. D., Afandhi A., & Fernando I. (2021). Abundance and diversity of edaphic mites (Arachnida, acari) under different forest management systems in Indonesia, Biodiversitas, 22, 3685–3692. https://doi.org/10.13057/biodiv/d220911
Kamczyc, J., Skorupski, M., Dyderski, M. K., Gazda, A. Hachułka, M., Horodecki, P., ..., & Jagodziński, A. M. (2018). Response of soil mites (Acari, Mesostigmata) to long-term Norway spruce plantation along a mountain stream. Experimental and Applied Acarology, 76, 269–286. https://doi.org/10.1007/s10493-018-0314-3
Kethley, J. (1990). Acarina: Prostigmata (Actinedida). In D. L. Dindal (Ed.), Soil biology guide (pp.). Wiley.
Kinnebrew, E., Neher, D. A., Ricketts, T. H., Wallin, K. F., Darby, H., Ziegler, S. E., ..., & Galford, G. L. (2022). Cultivated milkweed hosts high diversity of surface-active and soil-dwelling arthropods in a New England case study. Agriculture, Ecosystem and Environment, 325, 107749. https://doi.org/10.1016/j.agee.2021.107749
Koehler, H. (1998). Secondary succession of soil mesofauna: A thirteen year study. Applied Soil Ecology, 9(1–3), 81–86. https://doi.org/10.1016/S0929-1393(98)00058-4
Kohyt, J., & Skubała, P. (2020). Oribatid mite (Acari: Oribatida) communities reveal the negative impact of the red oak (Quercus rubra L.) on soil fauna in Polish commercial forests. Pedobiologia, 79, 150594. https://doi.org/10.1016/j.pedobi.2019.150594
Korboulewsky, N., Perez, G., & Chauvat. M. (2015). How tree diversity affects soil fauna diversity: A review. Soil Biology and Biochemistry, 94, 94–106. https://doi.org/10.1016/j.soilbio.2015.11.024
Krantz, G. W., & Walter, D. E. (2009). A manual of acarology. Texas: Texas Tech University Press.
Krebs, C. J. (2014). Ecology: The experimental analysis of distribution and abundance (6th ed.). San Francisco: Pearson.
Kumar U., & Singh R. (2016). Soil fauna: A retrospection with reference to Indian soil. International Journal of Research Studies in Zoology, 2(3), 17–28. https://doi.org/10.20431/2454-941X.0203003
Liu, D., Wu., D., & Chen, J. (2014). First record of the genus Arphthicarus Niedbala (Acari: Oribatida: Phthiracaridae) from China, with descriptions of two new species. Journal of Natural History, 48, 35–36. https://doi.org/10.1080/00222933.2014.909064
Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing Company.
Manu, M., Băncilă, R. I., Bîrsan, C. C., Mountford, O., & Onete, M. (2021). Soil mite communities (Acari: Mesostigmata) as indicators of urban ecosystems in Bucharest, Romania. Scientific Reports, 11, 3794. https://doi.org/10.1038/s41598-021-83417-4
Manu, M., Bancila, R. I., & Onete, M. (2018). Importance of moss habitats for mesostigmatid mites (Acari: Mesostigmata) in Romania. Turkish Journal of Zoology, 42(6), 6. https://doi.org.10.3906/zoo-1712-6
Margalef, R. (1958). Information theory in ecology. General Systems, 3, 36–71.
Menta, C., & Remelli, S. (2020). Soil health and arthropods: From complex system to worthwhile investigation. Insects, 11(1), 54. https://doi.org/10.3390/insects11010054
Menta, C., Conti, F. D., Lozano F. C., Staffilani, F., & Remelli, S. (2020) Soil arthropod responses in agroecosystem: Implications of different management and cropping systems. Agronomy, 10(7), 982. https://doi.org/10.3390/agronomy10070982
Mohsin, M., Ahmad, H., Nasir M. N., Abideen Z. U., Nadeem, M., Sattar T., ..., & Hameed, S. A. (2022). Quantifying the soil arthropod diversity in urban forest in Dera Ghazi Khan. Biomed Research International, 2022, 8125585. https://doi.org/10.1155/2022/8125585
Napierala A., Książkiewicz Parulska Z., & Błoszyk J. (2018). A red list of mites from the suborder Uropodina (Acari: Parasitiformes) in Poland. Experimental and Applied Acarology, 75, 467–490. https://doi.org/10.1007/s10493-018-0284-5
Pandit, B. H., Shrestha, K. K., & Bhattarai, S. S. (2014). Sustainable local livelihoods through enhancing agroforestry systems in Nepal. Journal of Forest and Livelihood, 12(1), 47–63. https://doi.org/10.4236/ojdm.2013.33027
Philips, J. R. (1990). Acarina: Astigmata (Acaridida). In D. L. Dindal (Ed.), Soil biology guide (pp. 757–778). Wiley.
Pielou E. C. (1969). An introduction to mathematical ecology. New York: Wiley-Interscience.
Prabowo, H., Rahardjo, B. T., Mudjiono, G., & Rizali, A. (2021). Impact of habitat manipulation on the diversity and abundance of beneficial and pest arthropods in sugarcane ratoon. Biodiversitas, 22(9), 4002–4010. https://doi.org/10.13057/biodiv/d220948
Reith, E., Gosling E., Knoke T., & Paul, B. (2022). Exploring trade-offs in agro-ecological landscapes: Using a multi-objective land-use allocation model to support agroforestry research. Basic and Applied Ecology, 64, 103–119. https://doi.org/10.1016/j.baae.2022.08.002
Rohyani, I. S. (2020). Community structure analysis of soil insects and their potential role as bioindicators in various ecosystem types in Lombok, West Nusa Tenggara, Indonesia. Biodiversitas, 21(9), 4221–4227. https://doi.org/10.13057/biodiv/d210937
Rousseau, L., Venier, L., Aubin, I., Gendreau-Berthiaume, B., Moretti, M., Salmon, S., & Handa, I. T. (2019). Woody biomass removal in harvested boreal forest leads to a partial functional homogenization of soil mesofaunal communities relative to unharvested forest. Soil Biology and Biochemistry, 133, 129–136. https://doi.org/10.1016/j.soilbio.2019.02.021
Roy, S., Roy, M. M., Jaiswal, A. K., & Baitha, A. (2018). Soil arthropods in maintaining soil health: Thrust areas for sugarcane production systems. Sugar Tech, 20, 376–391. https://doi.org/10.1007/s12355-018-0591-5
Roy S., Ahmed, R., Sanyal A. K., Babu, A., Bora, D., Rahman, A., & Handique, G. (2021). Biodiversity of soil arthropods with emphasis on oribatid mites in three different tea agro-ecosystem with three different agronomical practices in Assam, India. International Journal of Tropical Insect Science, 41(2), 1245–1254. https://doi.org/10.1007/s42690-020-00315-4
Seniczak A., Seniczak S., Graczyk R., Waldon-Rudzionek B., Nowicka A., & Pacek S. (2019). Seasonal dynamics of oribatid mite (Acari, Oribatida) in a bog in Poland. Wetlands, 39, 853–864. https://doi.org/10.1007/s13157-019-01125-2
Schowalter, T. D. (2022). Insect ecology: An ecosystem approach (5th ed.). Oxford: Elsevier.
Schuster R., Germain R. R., Bennett J. R., Reo N. J., & Arcese P. (2019) Vertebrate biodiversity on indigenous-managed lands in Australia, Brazil, and Canada equals that in protected areas. Environmental Science & Policy, 101, 1–6. https://doi.org/10.1016/j.envsci.2019.07.002
Siquera, G. M., Silva, E. F. F., & Paz-Ferreiro, J. (2014). Land use intensification effects in soil arthropod community of an entisol in Pernambuco State, Brazil. The Scientific World Journal, 2014, 625856. https://doi.org/10.1155/2014/625856Socarrás, A., & Izquierdo, I. (2014). Evaluación de sistemas agroecológicos mediante indicadores biológicos de la calidad del suelo: Mesofauna edáfica. Pastos y forrajes, 37(1), 109–114.
Srivastava, R. K., Awasthi, P., Kumar, A., & Ratn, A. (2022). Quantitative status of population of insects from Lucknow region, Uttar Pradesh, India. Journal of Entomology and Zoology Studies, 10(5), 330–334. https://doi.org/10.22271/j.ento.2022.v10.i5d.9079
Swarnali M., Rudra D. P., Soumyajit B., Pathiba B., Goutam S. K., & Gautam A. (2019). Correspondence of butterfly and host plant diversity: Foundation for habitat restoration and conservation. Europian Journal of Ecology, 5(1), 49–66. https://doi.org/10.2478/eje-2019-0007
Triplehorn, C. A., & Johnson, N. F. (2005). Borror and Delong’s introduction to the study of insect (7th ed.). California: Thompson.
Triyogo, A., Budiadi, Widyastuti S. M., Subrata S. A., & Budi S. S. (2020). Abundance of ants (Hymenoptera: Formicidae) and the functional groups in two different habitats. Biodiversitas, 21, 2079–2087. https://doi.org/10.13057/biodiv/d210535
Urbanowski, C. K., Horodecki, P., Kamczyc, J., Skorupski, M., & Jagodziński, A. M. (2021). Does litter decomposition affect mite communities (Acari, Mesostigmata)? A five-year litterbag experiment with 14 tree species in mixed forest stands growing on a post-industrial area. Geoderma, 391, 114963. https://doi.org/10.1016/j.geoderma.2021.114963
Vacht, P., Niglas, H., Kuu, A., Koff, T., Kutti, S., & Raamets, J. (2019). Oribatid mite (Acari: Oribatida) communities of urban brownfields in Tallin, Estonia, and their potential as bioindicators of wasteland successional stage. Acarologia, 59(1), 26–32, https://doi.org/10.24349/acarologia/20194310
Vanhove, W., Vanhoudt, N., & Damme, P. V. (2016). Effect of shade tree planting and soil management on rehabilitation success of a 22-year-old degraded coca (Theobroma cacao L.) plantation. Agriculture, Ecosystems and Environment, 219, 14–25. https://doi.org/10.1016/j.agee.2015.12.005
Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Marson, P. A., Schindler, D. W., ..., & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7, 737–750. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
Wale, M., & Yesuf, S. (2022) Abundance and diversity of soil arthropods in disturbed and undisturbed ecosystem in Western Amhara, Ethiopia. International Journal of Tropical Insect Science, 42, 767–781. https://doi.org/10.1007/s42690-021-00600-w
Wehner, K., Heethoff, M., & Brückner, A. (2018). Seasonal fluctuation of oribatid mite communities in forest microhabitats. PeerJ, 6, e4863. https://doi.org/10.7717/peerj.4863
Yadav, S. K., Babu, S., Yadav, M. K., Singh, K., Yadav, G. S., & Pal, S. (2013). A review of organic farming for sustainable agriculture in Northern India. International Journal of Agronomy, 2013, 1–8. https://doi.org/10.1155/2013/718145
Yadav, S. K., Kerketta, S., & Kumar, D. (2018). Biodiversity of soil arthropods: Symbol of soil health. In B. S. Chandel (Ed.), Research trends in life sciences (pp. 25–44). Akinik Publicatins. https://doi.org/10.22271/ed.book19a02
Yamamura, K. (1999). Transformation using (x + 0.5) to stabilize the variance of populations. Researches on Population Ecology, 41(3), 229–234. https://doi.org/10.1007/s101440050026
Zaitsev, A. S., Straalen, N. M., & Berg, M. P. (2013). Landscape geological age explains large scale spatial trends in oribatid mite diversity. Landscape Ecology, 28, 285–296. https://doi.org/10.1007/s10980-012-9834-0
Zayadi, H., Hakim, L., & Leksono, A. M. (2013). Composition and diversity of soil arthropods of Rajegwesi Meru Betiri National Park. The Journal of Tropical Life Science, 3(3), 166–171. https://doi.org/10.11594/JTLS.03.03.04
Zhang, Z. Q. (2003). Mites of greenhouses: Identification, biology and control. London: CABI Publishing.
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Manajemen Hutan Tropika is an open access journal which means that all contents is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the Budapest Open Access Initiative (BOAI) definition of open access.