Life Cycle Assessment of Wood Pellet Product at Korintiga Hutani company, Central Kalimantan, Indonesia

Iswanto, Dodik Ridho Nurrochmat, Ulfah Juniarti Siregar

Abstract

Climate change has forced human being to adapt in fulfilling their energy needs sustainably. In Indonesia, forestry activities has been considered as an emission rather than carbon sink. This study aims to analyze the inputs, outputs, and potential environmental impacts of wood pellet production in a forest company using life cycle assessment (LCA). The wood pellet is made from Eucalyptus pellita plantation. Analysis was made for 1 planting cycle or 6 years, and allometric equations were used to estimate the ability of industrial timber plantation forest to absorb CO2. Production of wood pellet starting from plantation requires inputs as follows: diesel fuel, electricity, NPK and other fertilizers, pesticides, and electrical energy. Those inputs produced emissions, of which the largest was N2O of 551.2927 kg, followed by NH3 of 7.5275 kg generated from NPK fertilizer. Another was PO43- amounted at 0.1792–0.2229 kg from liquid fertilizers and pesticides. Potential acidification came from 13.3675 kg SO2 eq, and eutrophication of 0.4021 kg PO43- eq. The greenhouse gas (GHG) emission was 678.0270 kg CO2 eq from the plantation activities, especially from diesel-based energy consumption, while wood pellet mills only released 0.1053 kg CO2 eq of GHG emissions. Thus, total emissions from 6 years' time of wood pellet production are much lower compared to the average CO2 absorbed by the plantation forest, of which annually is 36.34–67.69 ton ha-1year-1.

References

Abeydeera, L. H. U. W., Mesthrige, J. W., & Samarasinghalage, T. J. (2019). Global research on carbon emissions: a scientometric review. Sustainbility, 11, (3972), 124. https://doi.org/10.3390/su11143972

Agostini, A., Giuntoli, J., Mareli, L., & Amaducci, S. (2019). Flaws in the interpretation phase of bioenergy LCA the fuel debate and mislead policymakers. The International Journal of Life Cycle Assessment, 119. https://doi.org/10.1007/s11367-019-01654-2

Aisya, N. S. (2019). Dilema posisi Indonesia dalam persetujuan Paris tentang perubahan iklim. Indonesia Perspective, 4(2), 118132.

Amin, A. Z., Pramono., & Sunyoto. (2017). Pengaruh variasi jumlah perekat tepung tapioka terhadap karakteristik briket arang tempurung kelapa. Sainteknol: Jurnal Sains dan Teknologi, 5(2), 111118. https://doi.org/10.15294/sainteknol.v15i2.11693

Astuti, A. D., (2019). Analisis potensi dampak lingkungan dari budidaya tebu menggunakan pendekatan Life Cycle Assessment (LCA). Jurnal Litbang: Media Informasi Penelitian, Pengembangan dan IPTEK, 15(1), 5164. https://doi.org/10.33658/jl.v15i1.127

Aziz, I. (2008). Pembuatan biodiesel dari minyak goreng bekas dalam reaktor tangki alir berpengaduk. Jurnal Kimia Valensi, 1(2), 100103. https://doi.org/10.15408/jkv.v1i2.257

Baubus, J., Meer, P. V. D., & Kannine, M. (2010). Ecosystem goods and services from plantation forest. Washington: Earthscan.

Carle, J., Vuorinen, P., & Lungo, A. D. (2002). Status and trend in global forest plantation development. Journal Forest Products, 52(7), 113.

Daddi, T., Nucci, B., & Iraldo, F. (2017). Using life cycle assessment (LCA) to measure the environmental benefits of industrial symbiosis in an industrial cluster of SMEs. Journal of Cleaner Production, 147, 157164.

Damalas, C. A., & Eleftherohorinos, I. G., (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Enviromental Research and Public Health, 8(5), 14021419. https://doi.org/10.3390/ijerph8051402

Divya, J., & Belagali, S. L. (2012). Impact of chemical fertilizers on water quality in selected agricultural areas of Mysore District, Karnataka, India. International Journal of Environmental Sciences, 2(3), 14491458. https://doi.org/10.6088/ijes.00202030030

[EEA] European Environment Agency. (2006). Emission inventory guidebook. Luxembourg: The European Union.

[FAO] Food and Agriculture Organization of the United Nations. (2015). Global database of GHG emissions related to feed crops. Food and Agriculture Organization of The United Nations and Livestock Enviromental Assessment and Performance Partnership; Draft Version for Review. Roma: FAO.

Goulding, K. W. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Management, 32(3), 390399.

Handriyono, R. E., & Kusuma, M. N. (2017). Estimates for SO2 and NOx emissions from industrial activities in Karang Pilang Surabaya (pp 1924). Seminar Nasional Sains dan Teknologi Terapan V 2017. Surabaya: Adhi Tama Institute teknology Surabaya.

Hardiansyah, G. (2012). The potential studi of biomass and carbon of Eucalyptus pellita from industrial forest plantation of PT. Finnantara Intiga in West Kalimantan. Jurnal Wana Tropika, 2(2), 7281.

Herawan, T., & Leksono, B. (2018). Regenerasi in vitro Eucalyptus pellita F. Muell menggunakan kultur mata tunas. Jurnal Perbenihan Tanaman Hutan, 6(1), 113.

[IPCC] Intergovernmental Panel on Climate Change. (2006). IPPC guidelines for national greenhouse gas inventories. In H. S. Eggleston, K. Miwa, N. Srivastava, & K. Tanabe (Eds.). Kagawa: IGES.

Kaygusuz, K., Toksoy, D., & Bayramoglu, M. M. (2017). Global utilization of wood pellet for residential heating. Journal of Engineering Research and Applied Science, 6(2), 688697.

Khan, M. N, & Mohammad, F. (2013). Eutrophication: challenges and solustions. Arab Saudi: Business Media Dordrech. 115. https://doi.org/10.1007/978-94-007-7814-6_1

Kuzgunkaya, E. H. (2015). Evaluation of Turkey’s geothermal energy resources in terms of energy analysis. Proceedings world geothermal congress. Melbourne. Retrived from https://pdfs.semanticscholar.org/c818/ ebf8dabefa57c44e6b65422f9ea54fe1a7a8.pdf

Kweku, D. K., Bismark, O., Maxwel, A., Desmond, K. A., Danso, K. B., Mensah, E. A. O., ..., & Adormaa, B. B. (2017). Greenhouse effect: greenhouse gases and their impact on global warming. Journal of Scientific Research and Reports, 17(6), 19.

Lukmandaru, G., Zumaini, U. F., Soeprijadi, D., Nugroho, W. D., & Susanto, M. (2016). Chemical properties and fiber dimension of Eucalyptus pellita from the 2nd generation of progeny test in Pelaihari, South Borneo, Indonesia. Journal of Korean Wood Science Technology, 44(4), 571588.

McKendry, P. (2002). Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 83, 37– 46. https://doi.org/10.1016/S0960-8524(01)00118-3

Mfitumukiza, D., Nambasa, H., & Walakira, P. (2019). Life cycle assessment of products from agro-based companies in Uganda. The International Journal of Life Cycle Assessment, 24, 19251936. https://doi.org/10.1007/s11367-019-01629-3

Moreno, M. A. P., Manzano, E. S., & Moreno, A. J. P. (2019). Biomass as renewable energy: worldwide research trends. Journal Sustainability, 11, 19. https://doi.org/10.3390/su11030863

Ogunsola, O. E., Adeleke, O., & Aruna, A. T. (2018). Wood fuel analysis of some selected wood species within Ibadan. IOP Conference Series: Earth and Environmental Science, 173, 012043 https://doi.org/10.1088/1755-1315/173/1/012043

Pergola, M., Gialdini, A., Celano, G., Basile, M., Caniani, D., Cozzi, M., & Ripulone, F. (2017). An enviromental and economic analysis of the wood-pellet chain: two case studies in Southern Italy. The International Journal of Life Cycle Assessment, 23, 1675–1684. https://doi.org/10.1007/s11367-017-1374-z

Purba, R. (2014). Applications of NPK phonska and KCI fertilizer for the growth and yield of shallot (Allium ascalonicum) in Serang, Banten. International Journal of Applied and Technology, 4(3), 197203.

Saade, M. R. M., Passer, A., & Mittermayr, F. (2019). (Sprayed) concrete production in life cycle assessment: A systematic literature review. The International Journal of Life Cycle Assessment, 24, 120. https://doi.org/10.1007/s11367-019-01676-w

Shinya, Y., & Yukihiko, M. (2008). Buku panduan biomassa Asia: Panduan untuk produksi dan pemanfaatan biomassa. Japan: The Japan Institute of Energy.

Singh, V., & Toky, O. P. (1995). Biomass and net primary productivity in Leucaena, Acacia, and Eucalyptus, short rotation, high density (energy) plantations in arid India. Journal of Arid Environments, 31, 301309.

Susanto, J. P., Santoso, A. D., & Suwedi, N. (2017). Perhitungan potensi limbah padat kelapa sawit untuk sumber energi terbarukan dengan metode LCA. Jurnal Teknologi Lingkungan, 18(2), 165172. https://doi.org/10.29122/jtl.v18i2.2046

[UNFCCC] The United Nations Framework Convention on Climate Change. (2006). Greenhouse gas inventory submission. In B. Daniel, N. M. Ohlendorf (Eds.). Bonn: Intergovernmental and Legal Affairs Climate Change Secretariat.

[UNFCCC] The United Nations Framework Convention on Climate Change. (2015). Adoption of the Paris Agreement. Paris: United Nations.

Vakkilainen, E., Kuparinen, K., & Heinimo, J. (2013). Large industrial users of energy biomass. Lappeenranta University of Technology. Finland: IEA Bioenergy.

Authors

Iswanto
Dodik Ridho Nurrochmat
Ulfah Juniarti Siregar
ulfahjs@apps.ipb.ac.id (Primary Contact)
Iswanto, NurrochmatD. R., & SiregarU. J. (2021). Life Cycle Assessment of Wood Pellet Product at Korintiga Hutani company, Central Kalimantan, Indonesia . Jurnal Manajemen Hutan Tropika, 27(3), 200. https://doi.org/10.7226/jtfm.27.3.200

Article Details

##plugins.generic.relatedArticle.noArticleFound##