Allometric Equations for Estimating Aboveground Biomass of Eucalyptus urophylla S.T. Blake in East Nusa Tenggara

  • Ronggo Sadono Department of Forest Management, Faculty of Forestry, Universitas Gadjah Mada, Jl. Agro No. 1 Bulaksumur, Yogyakarta, Indonesia 55281
  • Wardhana Wahyu Department of Forest Management, Faculty of Forestry, Universitas Gadjah Mada, Jl. Agro No. 1 Bulaksumur, Yogyakarta, Indonesia 55281
  • Pandu Yudha Adi Putra Wirabuana Department of Forest Management, Faculty of Forestry, Universitas Gadjah Mada, Jl. Agro No. 1 Bulaksumur, Yogyakarta, Indonesia 55281
  • Fahmi Idris Department of Research and Development, TROFSIT Institute, Jl. Kaliurang Km 16, Yogyakarta, Indonesia 55281
Keywords: forest mensuration, accurate quantification, eucalyptus, industry development, climate change

Abstract

Understanding the essential contribution of eucalyptus plantation for industry development and climate change mitigation requires the accurate quantification of aboveground biomass at the individual tree species level. However, the direct measurement of aboveground biomass by destructive method is high cost and time consuming. Therefore, developing allometric equations is necessary to facilitate this effort. This study was designed to construct the specific allometric models for estimating aboveground biomass of Eucalyptus urophylla in East Nusa Tenggara. Forty two sample trees were utilized to develop allometric equations using regression analysis. Several parameters were selected as predictor variables, i.e. diameter at breast height (D), quadrat diameter at breast height combined with tree height (D2H), as well as D and H separately. Results showed that the mean aboveground biomass of E. urophylla was 143.9 ± 19.44 kg tree-1. The highest biomass were noted in stem (80.06%), followed by bark (11.89%), branch (4.69%), and foliage (3.36%). The relative contribution of stem to total aboveground biomass improved with the increasing of diameter class while the opposite trend was recorded in bark, branch, and foliage. The equation lnŶ = lna + b lnD was best and reliable for estimating the aboveground biomass of E. urophylla since it provided the highest accurate estimation (91.3%) and more practical than other models. Referring to these findings, this study concluded the use of allometric equation was reliable to support more efficient forest mensuration in E. urophylla plantation.

References

Almulqu, A. A., Arpornpong, N., & Boonyanuphap, J. (2019). Biomass estimation and allometric equation for tree species in dry forest of East Nusa Tenggara, Indonesia. Forestry Ideas, 25(2), 369–384.

Altanzagas, B., Luo, Y., Altansukh, B., Dorjsuren, C., Fang, J., & Hu, H. (2019). Allometric equations for estimating the above-ground biomass of five forest tree species in Khangai, Mongolia. Forests, 10(8), 1–17. https://doi.org/10.3390/f10080661

Arnhold, E. (2018). R-environment package for regression analysis. Pesquisa Agropecuaria Brasileira, 53(7), 870–873. https://doi.org/10.1590/S0100-204X2018000700012

Daba, D. E., & Soromessa, T. (2019). Allometric equations for aboveground biomass estimation of Diospyros abyssinica (Hiern) F. White tree species. Ecosystem Health and Sustainability, 5(1), 86–97. https://doi.org/10.1080/20964129.2019.1591169

Duncanson, L., Rourke, O., & Dubayah, R. (2015). Small sample sizes yield biased allometric equations in temperate forests. Scientific Reports, 5, 1–13. https://doi.org/10.1038/srep17153

Ekoungoulou, R., Niu, S., Joël Loumeto, J., Averti Ifo, S., Enock Bocko, Y., Mikieleko, F., ..., & Liu, X. (2015). Evaluating the carbon stock in above-and below- ground biomass in a moist Central African forest. Applied Ecology and Environmental Sciences, 3(2), 51–59. https://doi.org/10.12691/aees-3-2-4

Forrester, D. I., Tachauer, I. H. H., Annighoefer, P., Barbeito, I., Pretzsch, H., Ruiz-Peinado, R., ..., & Sileshi, G. W. (2017). Generalized biomass and leaf area allometric equations for european tree species incorporating stand structure, tree age and climate. Forest Ecology and Management, 396, 160–175. https://doi.org/10.1016/j.foreco.2017.04.011

Ghasemi, A., & Zahediasl, S. (2012). Metabolism. International Journal of Endrocrinology Metabolism, 10(2), 486–489. https://doi.org/10.5812/ijem.3505

González-García, M., Hevia, A., Majada, J., & Barrio-Anta, M. (2013). Above-ground biomass estimation at tree and stand level forshort rotation plantations of Eucalyptus nitens (Deane & Maiden) Maiden in Northwest Spain. Biomass and Bioenergy, 54, 147–157. https://doi.org/10.1016/j.biombioe.2013.03.019

Goussanou, C. A., Guendehou, S., Assogbadjo, A. E., Kaire, M., Sinsin, B., & Cuni-Sanchez, A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica, 50(2), 1–22. https://doi.org/10.14214/sf.1474

Guendehou, G. H. S., Lehtonen, A., Moudachirou, M., Mäkipää, R., & Sinsin, B. (2012). Stem biomass and volume models of selected tropical tree species in West Africa. Southern Forests, 74(2), 77–88. https://doi.org/10.2989/20702620.2012.701432

Hakamada, R., Hubbard, R. M., Ferraz, S., & Stape, J. L. (2017). Biomass production and potential water stress increase with planting density in four highly productive clonal Eucalyptus genotypes. Southern Forests: A Journal of Forest Science, 79(3), 251–257. https://doi.org/10.2989/20702620.2016.1256041

Han, S. H., & Park, B. B. (2020). Comparison of allometric equation and destructive measurement of carbon storage of naturally regenerated understory in a Pinus rigida plantation in South Korea. Forests, 11(4), 1–11. https://doi.org/10.3390/F11040425

He, H., Zhang, C., Zhao, X., Fousseni, F., Wang, J., Dai, H., ..., & Zuo, Q. (2018). Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLoS ONE, 13(1), 1–16. https://doi.org/10.1371/journal.pone.0186226

Inail, M. A., Hardiyanto, E. B., & Mendham, D. S. (2019). Growth responses of Eucalyptus pellita F . Muell plantations in South Sumatra to macronutrient fertilisers following several rotations of acacia. Forests, 10, 1–16. https://doi.org/10.3390/f10121054

Kalima, T., Malik, J., & Sunarto. (2019). Eksplorasi jenis rotan di Kabupaten Timor Tengah Selatan, Provinsi Nusa Tenggara Timur. Journal Pro-Life, 6(2), 160–170. https://doi.org/10.33541/pro-life.v6i2

Kebede, B., & Soromessa, T. (2018). Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. cuspidata in Mana Angetu Forest. Ecosystem Health and Sustainability, 4(1), 1–12. https://doi.org/10.1080/20964129.2018.1433951

Kurniadi, R., & Pujiono, E. (2009). Kandungan karbon di kawasan hutan Gunung Mutis. Kupang: Balai Penelitian Kehutanan Kupang.

Manuri, S., Brack, C., Noor'an, F., Rusolono, T., Anggraini, S. M., Dotzauer, H., & Kumara, I. (2016). Improved allometric equations for tree aboveground biomass estimation in tropical dipterocarp forests of Kalimantan, Indonesia. Forest Ecosystems, 3(28), 1–10. https://doi.org/10.1186/s40663-016-0087-2

Marimpan, L. S. (2010). Inventore hutan alam jenis ampupu (Eucalyptus urophylla) dalam menghasilkan volume kayu batang, biomassa, dan karbon hutan (thesis). Yogyakarta: Universitas Gadjah Mada. Retrieved from https://repository.ugm.ac.id/id/eprint/85229

Mishra, P., Pandey, C. M., & Singh, U. (2019). Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22(1), 67–72. https://doi.org/10.4103/aca.ACA

Nugroho, N. P. (2014). Developing site-specific allometric equations for above-ground biomass estimation in peat swamp forests of Rokan Hilir District, Riau Province, Indonesia. Indonesian Journal of Forestry Research, 1(1), 47–65. https://doi.org/10.20886/ijfr.2014.1.1.47-65

Nunes, L. J. R., Meireles, C. I. R., Gomes, C. J. P., & Ribeiro, N. M. C. A. (2019). Forest management and climate change mitigation: A review on carbon cycle flow models for the sustainability of resources. Sustainability, 11(19), 1–10. https://doi.org/10.3390/su11195276

Pirralho, M., Flores, D., Sousa, V. B., Quilhó, T., Knapic, S., & Pereira, H. (2014). Evaluation on paper making potential of nine Eucalyptus species based on wood anatomical features. Industrial Crops and Products, 54, 327–334. https://doi.org/10.1016/j.indcrop.2014.01.040

R Core Team. (2017). R: A language and environment for statistical computing. Retrieved from

https://www.R-project.org/

Ribeiro, S. C., Soares, C. P. B., Fehrmann, L., Jacovine, L. A. G., & von Gadow, K. (2015). Aboveground and belowground biomass and carbon estimates for clonal eucalyptus trees in Southeast Brazil. Revista Árvore, 39(2), 353–363. https://doi.org/10.1590/0100-67622015000200015

Roxburgh, S. H., Paul, K. I., Clifford, D., England, J. R., & Raison, R. J. (2015). Guidelines for constructing allometric models for the prediction of woody biomass: How many individuals to harvest? Ecosphere, 6(3), 1–28. https://doi.org/10.1890/ES14-00251.1

Sadono, R., Wardhana, W., Wirabuana, P. Y. A. P., & Idris, F. (2020). Productivity evaluation of Eucalyptus urophylla plantation established in dryland ecosystems, East Nusa Tenggara. Journal of Degraded and Mining Lands Management, 8(1), 2461–2469. https://doi.org/10.15243/jdmlm.2020.081.2461

Sanquetta, C. R., Dalla Corte, A. P., Pelissari, A. L., Tomé, M., Maas, G. C. B., & Sanquetta, M. N. I. (2018). Dynamics of carbon and CO2 removals by Brazilian forest plantations during 19902016. Carbon Balance and Management, 13(1), 1–12. https://doi.org/10.1186/s13021-018-0106-4

St-Onge, B., & Grandin, S. (2019). Estimating the height and basal area at individual tree and plot levels in Canadian Subarctic Lichen Woodlands using stereo WorldView-3 images. Remote Sensing, 11(3), 248. https://doi.org/10.3390/rs11030248

Tesfaye, M. A., Gardi, O., Anbessa, T. B., & Blaser, J. (2020). Aboveground biomass, growth and yield for some selected introduced tree species, namely Cupressus lusitanica, Eucalyptus saligna, and Pinus patula in Central Highlands of Ethiopia. Journal of Ecology and Environment, 44(1), 1–18. https://doi.org/10.1186/s41610-019-0146-z

Vega-Nieva, D. J., Valero, E., Picos, J., & Jiménez, E. (2015). Modeling the above and belowground biomass of planted and coppiced Eucalytpus globulus stands in NW Spain. Annals of Forest Science, 72(7), 967–980. https://doi.org/10.1007/s13595-015-0493-6

Viera, M., & Rodríguez-Soalleiro, R. (2019). A complete assessment of carbon stocks in above and belowground biomass components of a hybrid eucalyptus plantation in Southern Brazil. Forests, 10(7), 536. https://doi.org/10.3390/f10070536

Wardhana, W., Widyatmanti, W., Soraya, E., Soeprijadi, D., Larasati, B., Umarhadi, D. A., ..., & Wirabuana, P. Y. A. P. (2020). A hybrid approach of remote sensing for mapping vegetation biodiversity in a tropical rainforest. Biodiversitas, 21(9), 3946–3953. https://doi.org/10.13057/biodiv/d210904

Wirabuana, P. Y. A. P., Sadono, R., & Jurniarso, S. (2019). Fertilization effects on early growth, aboveground biomass, carbon storage, and leaf characteristics of Eucalyptus pellita F.Muell. in South Sumatera. Jurnal Manajemen Hutan Tropika, 25(3), 154–163. https://doi.org/10.7226/jtfm.25.3.154

Wirabuana, P. Y. A. P., Setiahadi, R., Sadono, R., Lukito, M., Martono, D. S., & Matatula, J. (2020). Allometric equations for estimating biomass of community forest tree species in Madiun, Indonesia. Biodiversitas, 21(9), 4291–4300. https://doi.org/10.13057/biodiv/d210947

Xue, Y., Yang, Z., Wang, X., Lin, Z., Li, D., & Su, S. (2016). Tree biomass allocation and its model additivity for Casuarina equisetifolia in a tropical forest of Hainan Island, China. PLoS ONE, 11(3), 1–20. https://doi.org/10.1371/journal.pone.0151858

Zhao, H., Li, Z., Zhou, G., Qiu, Z., & Wu, Z. (2019). Site-specific allometric models for prediction of above-and belowground biomass of subtropical forests in Guangzhou, Southern China. Forests, 10(10), 1–16. https://doi.org/10.3390/f10100862

Published
2021-04-01
How to Cite
Sadono, R., Wahyu, W., Wirabuana, P. Y. A. P., & Idris, F. (2021). Allometric Equations for Estimating Aboveground Biomass of Eucalyptus urophylla S.T. Blake in East Nusa Tenggara. Jurnal Manajemen Hutan Tropika, 27(1), 24. https://doi.org/10.7226/jtfm.27.1.24
Section
Articles