Penapisan Aktinomiset Rizosfer Tanaman Liliaceae sebagai Agens Pengendali Hayati Fusarium oxysporum f. sp. cepae

  • Eka Wijayanti IPB
  • Abdjad Asih Nawangsih IPB
  • Efi Toding Tondok Department of Plant Protection, IPB University
Keywords: antagonism test, basal rot disease, chitinase enzyme, IAA, Streptomyces spp.

Abstract

Screening of Liliaceae Rhizosphere Actinomycetes as Biological Control Agents of Fusarium oxysporum f. sp. cepae

Fusarium basal rot caused by F. oxysporum f. sp. cepae is one of the major diseases of shallot in Indonesia. The use of biocontrol agents is one alternative method for controlling this disease. Actinomycetes isolates have the potential as biological control agents for F. oxysporum f. sp. cepae because of its ability to produce bioactive compounds. This study aims to evaluate and select actinomycete isolates with the ability to inhibit the growth of F. oxysporum f. sp. cepae and potentially promote the growth of shallot crops. The study was divided into four stages: i.e. isolation, selection, characterization, and identification of the potential isolates. Forty-three isolates of actinomycetes were successfully isolated from Liliaceae plants, and 14 isolates were selected based on the results of the biosafety test. Antagonism test showed that 14 isolates produced inhibition of F. oxysporum f. sp. cepae by 3.67%–53.67%. Among them,  13 isolates produced chitinase enzyme with a chitinolytic index of 0.31–1.38. Five selected isolates, i.e., ABF42, ABF59, ACF45, AEF35, and AEF45, were able to solubilize phosphate and produced IAA at the concentration range of 24.82–82.88 ppm, but only three isolates were able to grow on media without nitrogen. Based on the sequences of 16S rRNA, the five isolates were identified as Streptomyces rameus, S. lydicus, S. panaciradicis, S. seoulensis, dan S. fuscichromogenes.

Downloads

Download data is not yet available.

References

Abd-Elsalam KA, Aly IN, Abdel-Satar MA, Khalil MS. Verreet JA. 2003. PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. Afr J Biotechnol. 2(4):82–85. DOI: https://doi.org/10.5897/AJB2003.000-1016.

Bérdy J. 2012. Thoughts and fact about antibiotics: Where we are now and where we are heading. J Antibiot. 65:385–395. DOI: https://doi.org/10.1038/ja.2012.54.

Beutin L. 1991. The different hemolysins of Escherichia coli. Med Microbiol Immunol. 180:167–182. DOI: https://doi.org/10.1007/BF00215246.

Bruce KD, Hiorns WD, Hobman JL, Osborn AM, Strike P, Ritchie DA. 1992. Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ Microbiol. 58(10):3413–3416. DOI: https://doi.org/10.1128/aem.58.10.3413-3416.1992.

Chaiharn M, Sujada N, Pathom-aree W. Lumyong S. 2019. Biological control of Rigidoporus microporus the cause of white root disease in rubber using PGPRs in vivo. Chiang Mai J Sci. 46(5):850–866.

Chukwuneme CF, Babalola OO, Kutu FR, Ojuederie OB. 2020. Characterization of actinomycetes isolates for plant growth promoting traits and their effects on drought tolerance in maize. J Plant Interactions. 15(1):93–105. DOI: https://doi.org/10.1080/17429145.2020.1752833.

Crawford DL, Lynch JM, Whipps JM, Ousley MA. 1993. Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol. 59(11):3899–3905. DOI: https://doi.org/10.1128/aem.59.11.3899-3905.1993.

Döbereiner J, Marriel TE, Neru M. 1976. Ecological distribution of Spirillum lipoferum. Beijerinck. Can J Microbiol. 22:1464–1473. DOI: https://doi.org/10.1139/m76-217.

El-Tarabily KA, El-Baghdady KZ, Al-Khajeh AS, Ayyash MM. Al-jneibi RS, El-Keblawy A, Abu-Qamar SF. 2020. Polyamine-producing actinobacteria enhance biomass production and seed yield in Salicornia bigelovii. Biol Fert Soils. 56:499–519. DOI: https://doi.org/10.1007/s00374-020-01450-3.

Fadhilah S, Wiyono S, Surahman M. 2014. Pengembangan teknik deteksi Fusarium patogen pada umbi benih bawang merah (Allium ascalonicum) di laboratorium. J Hort. 24(2):171-178. DOI: http://dx.doi.org/10.21082/jhort.v24n2.2014.p171-178.

Fatmawati U, Meryandini A, Nawangsih AA, Wahyudi AT. 2019. Screening and characterization of actinomycetes isolated from soybean rhizosphere for promoting plant growth. Biodiversitas. 20(10):2970–2977. DOI: https://doi.org/10.13057/biodiv/d201027.

Gordon SA, Weber RP. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol. 26(1):192–195. DOI: https://doi.org/10.1104/pp.26.1.192.

Goudjal Y, Zamouma,M, Sabaou N, Mathieu F, Zitouni A. 2016. Potential of endophytic Streptomyces spp. for biocontrol of Fusarium root rot disease and growth promotion of tomato seedlings. Biocontrol Sci Technol. 26(12):1691–1705. DOI: https://doi.org/10.1080/09583157.2016.1234584.

Grusak MA. 2001. Plant Macro and Micronutrient Minerals. Encyclopedia of Life Sciences. DOI: https://doi.org/10.1038/npg.els.0001306.

Hassanisaadi M, Bonjar GHS, Hosseinipour A, Abdolshahi R, Barka EA, Saadoun I. 2021. Biological control of Pythium aphanidermatum, the causal agent of tomato root rot by two Streptomyces root symbionts. Agronomy. 11(5):846. DOI: https://doi.org/10.3390/agronomy11050846.

Hsu SC, Lockwood J. 1975. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol. 29(3):422–426. DOI: https://doi.org/10.1128/am.29.3.422-426.1975.

Jumpathong J, Nuengchamnong N, Masin K, Nakaew N, Suphrom N. 2019. Thin layer chromatography-bioautography assay for antibacterial compounds from Streptomyces sp. TBRC 8912, a newly isolated actinomycin D producer. Chiang Mai J Sci. 46(5):839–849.

Klement Z, Goodman R. 1967. The hypersensitive reaction to infection by bacterial plant pathogens. Annu Rev Phytopathol. 51(11):17–44. DOI: https://doi.org/10.1146/annurev.py.05.090167.000313.

Kyselková M, Kopecký J, Felföldi T, Cermák L, Omelka M, Grundmann GL, Moënne-Loccoz Y, Ságová-Marecková M. 2008. Development of a 16s rRNA gene-based prototype microarray for the detection of selected actinomycetes genera. Antonie van Leeuwenhoek. 94(3):439–453. DOI: https://doi.org/10.1007/s10482-008-9261-z.

Li J, Guan J, Yuan L, Hou J, Wang C, Liu F, Yanga Y, Lu Z, Chen G, Zhu S. 2019. Effects of exogenous IAA in regulating photosynthetic capacity, carbohydrate metabolism and yield of Zizania latifolia. Sci Hortic. 253:276–285. DOI: https://doi.org/10.1016/j.scienta.2019.04.058.

Li Y, Guo O, He F, Li Y, Xue Q, Lai H. 2020. Biocontrol of root diseases and growth promotion of the tuberous plant Aconitum carmichaelii induced by Actinomycetes are related to shifts in the rhizosphere microbiota. Microb Ecol. 79(1):134-147. DOI: https://doi.org/10.1007/s00248-019-01388-6.

Lu CG, Liu WC, Qiu JY, Wang HM, Liu T, Liu DW. 2008. Identification of an antifungal metabolite produced by a potential biocontrol actinomyces strain A01. Braz J Microbiology. 39(4):701–707. DOI: https://doi.org/10.1590/S1517-83822008000400020.

Mariastuti HD, Listiyowati S, Wahyudi AT. 2018. Antifungal activity of soybean rhizosphere actinomycetes producing bioactive compounds against Fusarium oxysporum. Biodiversitas. 19(6):2127–2133. DOI: https://doi.org/10.13057/biodiv/d190619.

Phankhajon K, Somdee A, Somdee T. 2016. Algicidal activity of an actinomycete strain, Streptomyces rameus, against Microcystis aeruginosa. Water Science & Technology. 74 (6). 1398–1406. DOI: https://doi.org/10.2166/wst.2016.305.

Pikovskaya RI. 1948. Mobilization of phosporus in soil in connetion with vital activity of some microbial species. Microbiology. 17:362–370.

Retnowati Y, Moeljopawiro S, Djohan TS, Soetarto ES. 2018. Antimicrobial activities of actinomycete isolates from rhizospheric soils in different mangrove forests of Torosiaje, Gorontalo, Indonesia. Biodiversitas. 19(6):2196-2203. DOI: https://doi.org/10.13057/biodiv/d190627.

Schoffelmeer EAM, Klis FM, Sietsma JH, Cornelissen BJC. 1999. The cell wall of Fusarium oxysporum. Fungal Genet Biol. 27(2–3):275–282. DOI: https://doi.org/10.1006/fgbi.1999.1153.

Shamyuktha J, Sheela J, Rajinimala N, Jeberlinprabina B, Ravindran C. 2018. Survey on onion basal rot disease incidence and evaluation of aggregatum onion (Allium cepa L. Var. Aggregatum Don.) genotypes against Fusarium oxysporum f. sp. cepae. Int J Curr Microbiol App Sci. 7(12):3644-3657. DOI: https://doi.org/10.20546/ijcmas.2020.907.058.

Soltanzadeh M, Nejad MS, Bonjar GHS. 2016. Application of soil-borne actinomycetes for biological control against fusarium wilt of chickpea (Cicer arietinum) caused by Fusarium solani fsp pisi. J Phytopathol. 164(11–12):967–978. DOI: https://doi.org/10.1111/jph.12517.

Song L, Jiang N, Wei S, Lan Z, Pan L. 2020. Isolation, screening, and identification of actinomycetes with antifungal and enzyme activity assays against Colletotrichum dematium of Sarcandra glabra. Mycobiology. 48(1):37–43. DOI: https://doi.org/10.1080/12298093.2020.1716604.

Wahyudi AT, Priyanto JA, Fijrina HN, Mariastuti HD, Nawangsih AA. 2019. Streptomyces spp. from rhizosphere soil of maize with potential as plant growth promoter. Biodiversitas. 20(9):2547–2553. DOI: https://doi.org/10.13057/biodiv/d200916.

Wang M, Xue J, Ma J, Feng X, Ying H, Xu H. 2020. Streptomyces lydicus M01 regulates soil microbial community and alleviates foliar disease caused by Alternaria alternata on cucumbers. Front Microbiol. 11:942. DOI: https://doi.org/10.3389/fmicb.2020.00942.

Williams ST, Wellington EMH. 1982. Actinomycetes. Di dalam: Page AL, Miller RH, Keency OR, editor. Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties. Ed ke-2. Madison (USA): American Society of Agronomy. hlm: 969–987

Zamoum M, Goudjal Y, Sabaou N, Mathieu F, Zitouni A. 2017. Development of formulations based on Streptomyces rochei strain PTL2 spores for biocontrol of Rhizoctonia solani damping-off of tomato seedlings. Biocontrol Sci Technol. 27(6):723–738. DOI: https://doi.org/10.1080/09583157.2017.1334257.

Zhang H, Zheng J, Zhuang J, Xin Y, Zheng X, Zhang J. 2017. Streptomyces fuscichromogenes sp. nov., an actinomycete from soil. Int J Syst Evol Microbiol. 67:77–81. DOI: https://doi.org/10.1099/ijsem.0.001573.

Published
2022-03-25
How to Cite
Eka Wijayanti, Abdjad Asih Nawangsih, & Efi Toding Tondok. (2022). Penapisan Aktinomiset Rizosfer Tanaman Liliaceae sebagai Agens Pengendali Hayati Fusarium oxysporum f. sp. cepae. Jurnal Fitopatologi Indonesia, 17(6), 225-232. https://doi.org/10.14692/jfi.17.6.225-232
Section
Articles