Production Performance and Nitrogen and Phosphorus Mass Balance in Biofloc-based African Catfish Intensive Culture at Different Densities
Abstract
This study aimed to evaluate the production performance and nitrogen and phosphorus mass balance of biofloc-based intensive African catfish Clarias gariepinus culture at different densities. African catfish with an average body weight of 2.64 ± 0.06 g was randomly distributed into 12 units of round tank with a working volume of 2 m3 of water and maintained for 8 weeks. A completely randomized experimental design with four treatments (in triplicates), i.e. a control treatment at a fish density of 500 fish m-3 with regular water exchange and without organic carbon source addition, and biofloc treatments (BFT) at three different densities, i.e. 500 fish m-3 (BFT500), 750 fish m-3 (BFT750), and 1000 fish m-3 (BFT1000). Biofloc systems were performed with a regular addition of tapioca flour (40% C). The production performance between biofloc system and the control was not significantly different, however water and nitrogen utilizations were significantly more efficient in biofloc system than those of the control. The highest fish specific growth rate was observed in BFT1000 and BFT500 (6.01% day-1 and 5.96% day-1, respectively) (P<0.05). Fish density significantly affected the fish growth performance and productivity in biofloc systems, but not nitrogen and phosphorus utilizations. In conclusion, higher fish density significantly increased the production and water utilization efficiency in biofloc systems, but has no effect on nitrogen and phosphorus utilization efficiency. Furthermore, increasing the fish density could significantly reduce the fish survival and require more efforts to control biofloc biomass in the culture system.
Downloads
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).