Morphological Characteristics and Productivity of Guinea Grass (Panicum maximum CV Purple Guinea) Irradiated with Gamma-Ray

A. Fanindi, S. H. Sutjahjo, S. I. Aisyah, N. D. Purwantari

Abstract


Mutation breeding using gamma irradiation is one of the alternative ways to increase the  variability and productivity of Guinea grass (Panicum maximum cv Purple guinea). The aimed of the study was to determine the dosage of gamma irradiation and morphological characters for high-yielding of the putative mutant of guinea grass. The Guinea grass seeds was irradiated by gamma- ray. The treatment was 8 doses of gamma irradiation and control (non-irradiated). The treatment was arranged in a randomized complete block design (RCBD) with 3 replications. The study was conducted for 3 generations, which were mutants 1 (M1), mutant 1 vegetative 1 (M1V1), and mutant 1 vegetative 2 (M1V2). The results showed that the gamma irradiation dose affected variables observed. The variables affected in M1 were fresh and dry weights of shoot, the number of tillers, and the length of the leaves. Whereas in the populations of M1V1 and M1V2, almost all characters were influenced by gamma irradiation, except stem diameter, length of internode, and leaf length. Gamma irradiation doses of 175 x 2 Gy, 250 Gy and 350 Gy in M1V1 and 100 x 2 Gy, 150x2 Gy and 175 x 2 Gy in M1V2 produced the high number of tillers, fresh and dry shoot weights. Heritability value and GCV of number of tillers, fresh and dry weight of shoot were high for M1V1 and M1V2 populations. These results indicated that gamma-ray irradiation can be applied to increase productivity and genetic variability of Guinea grass. The highest forage production was obtained at a dose of 100 x 2 Gy, which was  625 g/plant.

Keywords


Panicum maximum, gamma rays, breeding, mutation

Full Text:

PDF

References


Aditya, J.P., P. Bhartiya, & A. Bhartiya. 2011. Genetic variability, heritability and character association for yield and component characters in soybean (G. Max (L.) Merrill). J. Cent. Eur. Agric. 12: 27–34. https://doi.org/10.5513/JCEA01/12.1.877

Ahmed, S. 2017. Impact of gamma radiations on wheat (Triticum aestivum L.) varieties (Batoor and Janbaz). Pure Appl. Biol. 6: 218-225. https://doi.org/10.19045/bspab.2017.60017

Akram, S., B.M.N. Hussain, M.A. Al Bari, J. D. Burritt, & M.H.A. Hossain. 2016. Genetic variability and association analysis of soybean (Glycine max (l.) merrill) for yield and yield attributing traits. Plant Gene Trait. 7: 1-11. https://doi.org/10.5376/pgt.2016.07.0013

Alikamanoglu, S., O. Yaycili, & A. Sen. 2011. Effect of gamma irradiationon growth factors, biochemical parameters, and accumulation of trace elements in soybean plants (Glycine max L. Merrill). Biol. Trace Elem. Res. 141: 283–293. https://doi.org/10.1007/s12011-010-8709-y

Ambavane, A.R., S.V. Sawardekar, S.A. Sawantdesai, & N.B. Gokhale. 2015. Studies on mutagenic effectiveness and efficiency of gamma rays and its effect on quantitative traits in finger millet (Eleusine coracana L. Gaertn). J. Radiat. Res. Appl. Sci. 8: 120–125. https://doi.org/10.1016/j.jrras.2014.12.004

Amin, R., M. R. Wani, A. Raina, S. Khursheed, & S. Khan. 2019. Induced morphological and chromosomal diversity in the mutagenized population of Black Cumin (Nigella sativa L.) using single and combination treatments of gamma rays and ethyl methane sulfonate. Jordan J. Biol. Sci. 12: 23-30

Amir, K., S. Hussain, M. Shuaib, F. Hussain, Z. Urooj, W.M. Khan, U. Zeb, K. Ali, M.A. Zeb, & F. Hussain. 2018. Effect of gamma irradiation on OKRA (Abelmoschus esculentus L.). Acta Ecol. Sin. 38: 368–373. https://doi.org/10.1016/j.chnaes.2018.02.002

Amri-Tiliouine, W., M. Laouar, A. Abdelguerfi, J. Jankowicz-Cieslak, L. Jankuloski, & B.J. Till. 2018. Genetic variability induced by gamma rays and preliminary results of low-cost TILLING on M2 generation of Chickpea (Cicer arietinum L.). Front. Plant Sci. 9: 1-15. https://doi.org/10.3389/fpls.2018.01568

Anand, Y. & S.T. Kajjidoni. 2014. Genetic enhancement of grain size and other productivity related traits through induced variability in kharif sorghum. Karnataka J. Agric. Sci. 27: 121-124

Asadi. 2013. Pemuliaan mutasi untuk perbaikan terhadap umur dan produktivitas pada kedelai. Jurnal Agro Biogen. 9:135-142. https://doi.org/10.21082/jbio.v9n3.2013.p135-142

Badr, A., H.H. El-Shazly, & M. Halawa. 2014. Cytological effects of gamma irradiationand its impact on growth and yield of M1 and M2 plants of cowpea cultivars. Cytologia 79: 195–206. https://doi.org/10.1508/cytologia.79.195

Chaudhuri, S.K. 2002. A simple and reliable method to detect gamma-irradiated lentil (Lens culinaris Medik.) seeds by germination efficiency and seedling growth test. Radiat. Phys. Chem. 64: 131–136. https://doi.org/10.1016/S0969-806X(01)00467-4

Chen, J., C. Thammina, W. Li, H. Yu, H. Yer, R. El-Tanbouly, M. Marron, L. Katin-Grazzini, Y. Chen, J. Inguagiato, R.J. McAvoy, K. Guillard, X. Zhang, & Y. Li. 2016. Isolation of prostrate turfgrass mutants via screening of dwarf phenotype and characterization of a perennial ryegrass prostrate mutant. Hortic. Res. 3:1-6. https://doi.org/10.1038/hortres.2016.3

Dhole, V. J. & K. S. Reddy. 2018. Genetic analysis and variability studies in mutants induced through electron beam and gamma rays in mungbean (Vigna radiata L. Wilczek). Journal of Plant Breeding 1: 304-312. https://doi.org/10.5958/0975-928X.2018.00035.2

Eroglu, Y., H.E. Eroglu, & A.I. Ilbas. 2007. Gamma ray reduces mitotic index in embryonic roots of Hordeum vulgare L. Adv. Biol. Res. 1: 26-28.

Fanindi, A., S.H. Sutjahjo, S.I. Aisyah, & N.D. Purwantari. 2016. Characteristic morphology and genetic variability of Guinea grass (Panicum maximum cv Purple Guinea) through gamma ray irradiated on acid land. JITV. 21: 205-214. https://doi.org/10.14334/jitv.v21i4.1635

Guedea, M., A. Castel, M. Arnalte, A. Mollera,V. Mu˜ no, & F. Guedead. 2013. Single high-dose vs. fractionated radiotherapy: Effects on plant growth rates. Rep. Pract. Oncol. Radiother. 18: 279–285. https://doi.org/10.1016/j.rpor.2013.07.012

Hanafy, R. S. & S. A. Akladious. 2018. Physiological and molecular studies on the effect of gamma radiation in fenugreek (Trigonella foenum-graecum L.) plants. J. Genet. Eng. Biotechnol. 16: 683–692. https://doi.org/10.1016/j.jgeb.2018.02.012

Hare, M.D., S. Phengphet, T. Songsiri, N. Sutin, & E. Stern. 2013. Effect of cutting interval on yield and quality of two Panicum maximum cultivars in Thailand. Tropical Grasslands – Forrajes Tropicales. 1: 87−89. https://doi.org/10.17138/TGFT(1)87-89

Hanafiah, D.S., Trikoesoemaningtyas, S. Yahya, & D. Wirnas. 2010. Studi radiosensitivitas kedelai (Glycine Max (L) Merr) varietas argomulyo melalui irradiasi sinar gamma. Bionatura-Jurnal Ilmu-ilmu Hayati dan Fisik. 12: 103-109

Islam, M., S. Raffi, M. Hossain, & A. Hasan. 2015. Analysis of genetic variability, heritability and genetic advance for yield and yield associated traits in some promising advanced lines of rice. Progress. Agric. 26:26-31. https://doi.org/10.3329/pa.v26i1.24511

Jan, S., T. Parween, T. O. Siddiqi, & Mahmooduzzafar. 2011. Gamma radiation effects on growth and yield attributes of Psoralea corylifolia L. with reference to enhanced production of psoralen. Plant Growth Regul. 64:163–171. https://doi.org/10.1007/s10725-010-9552-z

Jank, L., J.A. Martuscello, R.M.S. Resende, & C.B. Valle. 2010. Panicummaximum Jacq. In Fonseca DM and Martuscello JA (eds.) Plantas Forrageiras. Editora UFV, Viçosa, pp. 166-194.

Kalton, R.R., A.G. Smit, & R.C. Leffel. 1952. Breeding Perennial Forage Grasses. In Hanson, A.A. & H.L. Carnahan. Technical Bulletin 1145. United States Department of Agriculture. pp 121

Khan, W.M. 2018. Gamma irradiationinduced mutation in M2 population of Pea (Pisum sativum L.). Pure Appl. Biol. 7:832-839. https://doi.org/10.19045/bspab.2018.700102

Khan, W.M., S. Z. Shah, L. Shah, M. S. Khan, Z. Muhammad, I. Ahmad, M. Anwar, & S. Ali. 2015 Effect of gamma radiation on some morphological and biochemical characteristics of Brassica napus L. (variety Bulbul 98). Pure Appl. Biol. 4: 236-243. https://doi.org/10.19045/bspab.2015.42012

Kim, J.B., S.H. Kim, B.-K. Ha, S.-Y. Kang, C.S. Jang, Y.W. Seo, & D.S Kim. 2014. Differentially expressed genes in response to gamma-irirradiationduring the vegetative stage in Arabidopsis thaliana. Mol. Biol. Rep. 41: 2229–2241. https://doi.org/10.1007/s11033-014-3074-0

Kitano, S., A. Miyagi, Y. Oono, Y. Hase, I. Narumi, M. Yamaguchi, H. Uchimiya, & M. Kawai-Yamada. 2015. Metabolic alterations in leaves of oxalate-rich plant Rumex obtusifolius L. irradiated by gamma rays. Metabolomics 11: 134–142. https://doi.org/10.1007/s11306-014-0684-4

Laskar, R.A. & S. Khan. 2017. Assessment on induced genetic variability and divergence in the mutagenized lentil populations of microsperma and macrosperma cultivars developed using physical and chemical mutagenesis. PLOS ONE 12: e0184598. https://doi.org/10.1371/journal.pone.0184598

Le, K.-C., T.-T Ho, K.-Y Paek, & S.-Y Park. 2019. Low dose gamma radiation increases the biomass and ginsenoside content of callus and adventitious root cultures of wild ginseng (Panax ginseng Mayer). Ind. Crops Prod. 130: 16–24. https://doi.org/10.1016/j.indcrop.2018.12.056

Marcu, D., G. Damian, C. Cosma, & V. Cristea. 2013. Gamma irradiationeffects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays). J. Biol. Phys. 39: 625–634. https://doi.org/10.1007/s10867-013-9322-z

Moedjiono & M.J. Mejaya. 1994. Variabilitas genetik beberapa karakter plasma nutfah jagung koleksi Balittan Malang. Zuriat: 5: 27-32

Mohajer, S., R. Mat Taha, M.M. Lay, A. K. Esmaeili, & M. Khalili. 2014. Stimulatory effects of gamma irradiation on phytochemical properties, mitotic behaviour, and nutritional composition of Sainfoin (Onobrychis viciifolia Scop.). The Scientific World Journal 2014: 1–9. https://doi.org/10.1155/2014/854093

Muhammad, M.L., A.O. Falusi, M.O. Adebola, O.D. Oyedum, A.A. Gado, & M.C. Dang. 2018. Spectrum and frequency of mutations induced by gamma radiations in three varieties of Nigerian Sesame (Sesamum indicum L.). Not. Sci. Biol. 10: 87. https://doi.org/10.15835/nsb10110219

Mutlu, S.S., H. Djapo, S.F. Ozmen, C. Selim, & N. Tuncel. 2015. Gamma-ray Irirradiationinduces useful morphological variation in Bermudagrass. Not. Bot. Horti. Agrobo. 43:515-520. https://doi.org/10.15835/nbha.43.2.9762

Parman, T., M.J. Wiley, & P.G. Wells. 1999. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat. Med. 5: 582–585. https://doi.org/10.1038/8466

Respati, A.N., N. Umami, & C. Hanim. 2018. Growth and production of Brachiaria brizantha cv. MG5 in three difference regrowth phase treated by gamma radiation dose. Trop. Anim. Sci. J. 41: 179–184. https://doi.org/10.5398/tasj.2018.41.3.179

Saha, S. & A. Paul. 2019. Radiation induced mutagen sensitivity and chlorophyll mutation frequency on sesame seeds. Journal of Environmental Biology 40: 252–257. https://doi.org/10.22438/jeb/40/2/MRN-726

Santoso, B. & B.Tj. Hariadi. 2008. Komposisi kimia, degradasi nutrien dan produksi gas metana in vitro rumput tropik yang diawetkan dengan metode silase dan hay. Med. Pet. 31:128-137

Singh, B. D. 2005. Mutations in Crop Improvement. In: Singh, B. D. (ed). Plant Breeding, Principles and Methods. Kalyani Publishers, Ludhiana. pp. 698–731.

Singh, R.K. & B.D. Chaundhary. 1977. Biometrical Methods in Quantitative Genetics Analysis. Kalyani Publishers, New Delhi.

Sobrizal. 2016. Potensi pemuliaan mutasi untuk perbaikan varietas padi lokal indonesia. Jurnal Ilmiah Aplikasi Isotop dan Radiasi 12: 23-35. https://doi.org/10.17146/jair.2016.12.1.3198

Sri Devi, A. & L. Mullainathan. 2012. Effect of gamma rays and ethyl methane sulphonate (EMS) in M3 generation of blackgram (Vigna mungo L. Hepper). Afr. J. Biotechnol. 11: 3548-3252.https://doi.org/10.5897/AJB10.1773

Tabti, D., M. Laouar, K. Rajendran, S. Kumar, & A. Abdelguerfi. 2018. Identification of desirable mutants in quantitative traits of lentil at early (M2) population. J. Environ. Biol. 39:137–142. https://doi.org/10.22438/jeb/39/2/MRN-476

Tah, P.R. 2006. Studies on gamma ray induced mutations in Mungbean [Vigna radiata (L.) Wilczek]. Asian Journal of Plant Science 5:61-70. https://doi.org/10.3923/ajps.2006.61.70

Taheri, S., T.L. Abdullah, Z. Ahmad, & N.A.P. Abdullah. 2014. effect of acute gamma irirradiationonCurcuma alismatifoliavarieties and detection of DNA polymorphism through SSR marker. BioMed Res. 1–18. https://doi.org/10.1155/2014/631813

Ukanwoko, A.I. & N.C. Igwe. 2012. Proximate composition of some grass and legume silages prepared in a humid tropical environment. International Research Journal of Agricultural Science and Soil Science. 2: 068-071

Ulukapi, K. & S.F. Ozmen. 2018. Study of the effect of irirradiation (60 Co) on M 1 plants of common bean (Phaseolus vulgaris L.) cultivars and determined of proper doses for mutation breeding. J. Radiat. Res. Appl. Sci. 11: 157–161. https://doi.org/10.1016/j.jrras.2017.12.004

Umeshkumar, V., B.G. Sanjeev, & K. Madhusudan. 2015. Mutagenic effect of gamma rays on quantitative traits and grain micronutrients in Finger Millet (Eleusine coracana (L.) Gaertn). Trends in Biosciences. 21: 5884-5887

Vicente-Chandler, J. 2001. Intensive Management of Forage Grasses in the Humidtropics. In: A. Sotomoyor-Rios and W.D. Pitman (Eds). Tropical Forage Plants: Development and Use. CRC Press, Boca Ratoon, London. https://doi.org/10.1201/9781420038781.ch10

Walther, F. & A. Sauer. 1990. Influence of acute and fractionated X-ray doses on shoot production of invitro derived explants of Gerbera jamesnii H. Bolus. Plant Breed. 105:137-143. https://doi.org/10.1111/j.1439-0523.1990.tb00466.x




DOI: https://doi.org/10.5398/tasj.2019.42.2.97

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Tropical Animal Science Journal


Editorial Office

Tropical Animal Science Journal

Faculty of Animal Science Building, IPB University (Bogor Agricultural University)
Jln Agatis, Kampus IPB Darmaga, Bogor 16680, Indonesia
Phone/Fax.: +62-251-8421692
e-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id
p-ISSN: 2615-787X  e-ISSN: 2615-790X
 
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.