Pre-Adipocyte Determination and Adipocyte Differentiation of Stromal Vascular Cells Isolated From Intramuscular Tissue of Hanwoo Beef Cattle Treated by Acetate and Propionate
Abstract
The effects of acetate and propionate in enhancing intramuscular fat (marbling) deposition in beef cattle are poorly understood. This study aimed to evaluate the effects of acetate and propionate on pre-adipocyte determination and adipocyte differentiation in stromal vascular cells (SVC) isolated from the intramuscular tissue of Hanwoo beef cattle. SVC were isolated and treated with different concentrations of acetate and propionate (0.125 to 1 mM). Pre-adipocyte determination was observed through the Zfp423 (Zinc finger protein 423) and Pref-1 (Pre-adipocyte factor-1) genes expressions, which were important transcription factors used to identify committed pre-adipocytes. Adipocyte differentiation was determined based on the lipid accumulation, triglyceride contents, and their molecular activities related to adipogenic markers. The results suggest that acetate supports pre-adipocyte determination in SVC which is observed to increase the expression of Zfp423 and Pref-1 along with the increasing acetate concentration. Propionate treatment was seen to significantly affect lipid accumulation as well as triglyceride content in SVC, compared to acetate treatment. Furthermore, propionate treatment very significantly increased the expressions of PPARγ, C/EBPα, SREBP-1c, and FABP4. In conclusion, acetate likely enhances pre-adipocyte determination, while propionate effectively promotes adipogenesis in SVC isolated from the intramuscular tissue of Hanwoo beef cattle.
References
Brooks, M. A., C. W. Choi, D. K. Lunt, R. K. Miller, C. B. Choi, & S. B. Smith. 2011. CASE STUDY: Carcass and meat characteristics and M. longissimus thoracis histology of beef from calf-fed and yearling-fed Angus steers. The Professional Animal Scientist 27: 385-393. https://doi.org/10.15232/S1080-7446(15)30503-9
dela Cruz, J. F., Y. K. Oh, & S. G. Hwang. 2015. The control of stromal vascular cell differentiation by retinoic acid and calcium in Hanwoo beef cattle adipose tissue. J. Anim. Prod. Advance 5: 835-844. https://doi.org/10.5455/japa.20151118020233
Fernyhough, M. E., E. Okine, G. Hausman, J. L. Vierck, & M. V. Dodson. 2007. PPARγ and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. Domest. Anim. Endocrinol. 33: 367-378. https://doi.org/10.1016/j.domaniend.2007.05.001
Florido, R, T. Tchkonia, & J. L. Kirkland. 2011. Aging and adipose tissue. In Handbook of the Biology of Aging. 7th Edition. pp. 119-139.
Frayn, N. K. & S. M. Humphreys. 2011. Metabolic characteristics of human subcutaneous abdominal adipose tissueafter overnight fast. Am. J. Physiol. Endocrinol. Metab. 302: E468-E475. https://doi.org/10.1152/ajpendo.00527.2011
Guclu, M., O. O. Gul, S. Cander, O. Unal, G. Ozkaya, E. Sarandol, & C. Ersoy. 2015. Effect of rosiglitazone and insulin combination therapy on inflammation parameters and adipocytokine levels in patients with type 1 DM. J. Diabetes Res. 22: 18-23. https://doi.org/10.1155/2015/807891
Gupta, R. K., Z. Arany, P. Seale, R. J. Mepani, L. Ye, H. M. Conroe, Y. A. Roby, H. Kulaga, R. R. Reed, & B. M. Spiegelman. 2010. Transcriptional control of preadipocyte determination by Zfp423. Nature 464: 619. https://doi.org/10.1038/nature08816
Gupta, R. K., R. J. Mepani, S. Kleiner, J. C. Lo, M. J. Khandekar, P. Cohen, A. Frontini, D. C. Bhowmick, L. Ye, S. Cinti, & B. M. Spiegelman. 2012. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab. 15: 230-239. https://doi.org/10.1016/j.cmet.2012.01.010
Hausman, D. B., M. DiGirolamo, T. J. Bartness, G. J. Hausman, & R. J. Martin. 2001. The biology of white adipocyte proliferation. Obes. Rev. 2: 239-254. https://doi.org/10.1046/j.1467-789X.2001.00042.x
Hausman, G. J., M. V. Dodson, K. Ajuwon, M. Azain, K. M. Barnes, L. L. Guan, Z. Jiang, S. P. Poulos, R. D. Sainz, S. Smith, & M. Spurlock. 2009. Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 87: 1218-1246. https://doi.org/10.2527/jas.2008-1427
Herman, M. A., O. D. Peroni, J. Villoria, M. R. Schön, N. A. Abumrad, M. Blüher, S. Klein, & B. B. Kahn. 2012. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484: 333. https://doi.org/10.1038/nature10986
Hong, Y. H., Y. Nishimura, D. Hishikawa, H. Tsuzuki, H. Miyahara, C. Gotoh, K. C. Choi, D. D. Feng, C. Chen, H. G. Lee, & K. Katoh. 2005. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, no. 12: 5092-5099. https://doi.org/10.1210/en.2005-0545
Huang, Y., A. K. Das, Q. Y. Yang, M. J. Zhu, & M. Du. 2012. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells. PloS one 7: e47496. https://doi.org/10.1371/journal.pone.0047496
Hudak, C. S. & H. S. Sul. 2013.Pref-1, a gatekeeper of adipogenesis. Front Endocrinol. 4: 79. https://doi.org/10.3389/fendo.2013.00079
Kras, K. M., D. B. Hausman, G. J. Hausman, & R. J. Martin. 1999. Adipocyte development is dependent upon stem cell recruitment and proliferation of preadipocytes. Obes. Res. 7: 491-497. https://doi.org/10.1002/j.1550-8528.1999.tb00438.x
Lee, S. H., C. Gondro, J. V. D. Werf, N. K. Kim, D. J. Lim, E. W. Park, S. J. Oh, J. P. Gibson, & J. M. Thompson. 2010. Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean Cattle). BMC Genomics 11: 623. https://doi.org/10.1186/1471-2164-11-623
Machinal-Quelin, F., M. N. Dieudonne, M. C. Leneveu, R. Pecquery, & Y. Giudicelli. 2002. Proadipogenic effect of leptin on rat preadipocytes in vitro: activation of MAPK and STAT3 signaling pathways. Am. J. Physiol. Cell Physiol. 282: C853-C863. https://doi.org/10.1152/ajpcell.00331.2001
McDonald, P. 2002. Animal Nutrition. Pearson Education Publisher.
Moseti, D., A. Regassa, & W. K. Kim. 2016. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int. J. Mol. Sci. 17: 124. https://doi.org/10.3390/ijms17010124
Nayananjalie, W. A. D., T. R. Wiles, D. E. Gerrard, M. A. McCann, & M. D. Hanigan. 2015. Acetate and glucose incorporation into subcutaneous, intramuscular, and visceral fat of finishing steers. J. Anim. Sci. 93: 2451-2459. https://doi.org/10.2527/jas.2014-8374
Ntambi, J. M. & K. Young-Cheul. 2000. Adipocyte differentiation and gene expression. J. Nutr. 130: 3122S-3126S. https://doi.org/10.1093/jn/130.12.3122S
Otto, T. C. & M. D. Lane. 2005. Adipose development: from stem cell to adipocyte. Crit. Rev. Biochem. Mol. Biol. 40: 229-242. https://doi.org/10.1080/10409230591008189
Rosen, E. D. & O. A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7: 885. https://doi.org/10.1038/nrm2066
Rutkowski, J. M., J. H. Stern, & P. E. Scherer. 2015. The cell biology of fat expansion. J. Cell Biol. 208: 501-512. https://doi.org/10.1083/jcb.201409063
Russell, J. B. 1998. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J. Dairy Sci. 81: 3222-3230. https://doi.org/10.3168/jds.S0022-0302(98)75886-2
Shao, M., J. Ishibashi, C. M. Kusminski, Q. A. Wang, C. Hepler, L. Vishvanath, K. A. MacPherson, S. B. Spurgin, K. Sun, W. L. Holland, & P. Seale. 2016. Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program. Cell Metab. 23: 1167-1184. https://doi.org/10.1016/j.cmet.2016.04.023
Smith, S. B & B. J. Johnson. 2016. Marbling: management of cattle to maximize the deposition of intramuscular adipose tissue. J. Anim. Sci. 94: 382. https://doi.org/10.2527/jam2016-0794
Torii, S., T. Matsui, & H. Yano. 1996. Development of intramuscular fat in Wagyu beef cattle depends on adipogenic or antiadipogenic substances present in serum. Animal Sci. J. 63: 73-78. https://doi.org/10.1017/S1357729800028307
Vishvanath, L., K. A. MacPherson, K. Hepler, Q. A. Wang, M. Shao, S. B. Spurgin, M. Y. Wang, C. M. Kusminski, T. S. Morley, & R. K. Gupta. 2016. Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab. 23: 350-359. https://doi.org/10.1016/j.cmet.2015.10.018
Wan, R., J. P. Du, L. P. Ren, & Q. X. Meng. 2009. Selective adipogenic effects of propionate on bovine intramuscular and subcutaneous preadipocytes. Meat Sci. 82: 372-378. https://doi.org/10.1016/j.meatsci.2009.02.008
Wang, Y., L. Zhao, C. Smas, & H. S. Sul. 2010. Pref-1 interacts with fibronectin to inhibit adipocyte differentiation. Mol. Cell Biol. 30: 3480-3492. https://doi.org/10.1128/MCB.00057-10
Wattiaux, M. A. 1996. Dairy essentials reproduction and genetic selection. Birth 42, no. 32: 25.
Wheeler, T. L., L. V. Cundiff, & R. M. Koch. 1994. Effect of marbling degree on beef palatability in Bostaurus and Bosindicus cattle. J. Anim. Sci. 72: 3145-3151. https://doi.org/10.2527/1994.72123145x
Zivkovic, A. M., J. B. German, & A. J. Sanyal. 2007. Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am. J. Clin. Nutr. 86: 285-300. https://doi.org/10.1093/ajcn/86.2.285
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.