Pre-Adipocyte Determination and Adipocyte Differentiation of Stromal Vascular Cells Isolated From Intramuscular Tissue of Hanwoo Beef Cattle Treated by Acetate and Propionate

T. G. Wandita, N. Joshi, H. H. Kim, S. J. An, S. G. Hwang

Abstract


The effects of acetate and propionate in enhancing intramuscular fat (marbling) deposition in beef cattle are poorly understood. This study aimed to evaluate the effects of acetate and propionate on pre-adipocyte determination and adipocyte differentiation in stromal vascular cells (SVC) isolated from the intramuscular tissue of Hanwoo beef cattle. SVC were isolated and treated with different concentrations of acetate and propionate (0.125 to 1 mM). Pre-adipocyte determination was observed through the Zfp423 (Zinc finger protein 423) and Pref-1 (Pre-adipocyte factor-1) genes expressions, which were important transcription factors used to identify committed pre-adipocytes. Adipocyte differentiation was determined based on the lipid accumulation, triglyceride contents, and their molecular activities related to adipogenic markers. The results suggest that acetate supports pre-adipocyte determination in SVC which is observed to increase the expression of Zfp423 and Pref-1 along with the increasing acetate concentration. Propionate treatment was seen to significantly affect lipid accumulation as well as triglyceride content in SVC, compared to acetate treatment. Furthermore, propionate treatment very significantly increased the expressions of PPARγ, C/EBPα, SREBP-1c, and FABP4. In conclusion, acetate likely enhances pre-adipocyte determination, while propionate effectively promotes adipogenesis in SVC isolated from the intramuscular tissue of Hanwoo beef cattle.


Keywords


acetate; adipogenesis; Hanwoo; marbling; propionate

Full Text:

PDF

References


Albrecht, E., T. Gotoh, F. Ebara, J. X. Xu, T. Viergutz, G. Nürnberg, S. Maak, & J. Wegner. 2011. Cellular conditions for intramuscular fat deposition in Japanese Black and Holstein steers. Meat Sci. 89: 13-20. https://doi.org/10.1016/j.meatsci.2011.03.012

Brooks, M. A., C. W. Choi, D. K. Lunt, R. K. Miller, C. B. Choi, & S. B. Smith. 2011. CASE STUDY: Carcass and meat characteristics and M. longissimus thoracis histology of beef from calf-fed and yearling-fed Angus steers. The Professional Animal Scientist 27: 385-393. https://doi.org/10.15232/S1080-7446(15)30503-9

dela Cruz, J. F., Y. K. Oh, & S. G. Hwang. 2015. The control of stromal vascular cell differentiation by retinoic acid and calcium in Hanwoo beef cattle adipose tissue. J. Anim. Prod. Advance 5: 835-844. https://doi.org/10.5455/japa.20151118020233

Fernyhough, M. E., E. Okine, G. Hausman, J. L. Vierck, & M. V. Dodson. 2007. PPARγ and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. Domest. Anim. Endocrinol. 33: 367-378. https://doi.org/10.1016/j.domaniend.2007.05.001

Florido, R, T. Tchkonia, & J. L. Kirkland. 2011. Aging and adipose tissue. In Handbook of the Biology of Aging. 7th Edition. pp. 119-139.

Frayn, N. K. & S. M. Humphreys. 2011. Metabolic characteristics of human subcutaneous abdominal adipose tissueafter overnight fast. Am. J. Physiol. Endocrinol. Metab. 302: E468-E475. https://doi.org/10.1152/ajpendo.00527.2011

Guclu, M., O. O. Gul, S. Cander, O. Unal, G. Ozkaya, E. Sarandol, & C. Ersoy. 2015. Effect of rosiglitazone and insulin combination therapy on inflammation parameters and adipocytokine levels in patients with type 1 DM. J. Diabetes Res. 22: 18-23. https://doi.org/10.1155/2015/807891

Gupta, R. K., Z. Arany, P. Seale, R. J. Mepani, L. Ye, H. M. Conroe, Y. A. Roby, H. Kulaga, R. R. Reed, & B. M. Spiegelman. 2010. Transcriptional control of preadipocyte determination by Zfp423. Nature 464: 619. https://doi.org/10.1038/nature08816

Gupta, R. K., R. J. Mepani, S. Kleiner, J. C. Lo, M. J. Khandekar, P. Cohen, A. Frontini, D. C. Bhowmick, L. Ye, S. Cinti, & B. M. Spiegelman. 2012. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab. 15: 230-239. https://doi.org/10.1016/j.cmet.2012.01.010

Hausman, D. B., M. DiGirolamo, T. J. Bartness, G. J. Hausman, & R. J. Martin. 2001. The biology of white adipocyte proliferation. Obes. Rev. 2: 239-254. https://doi.org/10.1046/j.1467-789X.2001.00042.x

Hausman, G. J., M. V. Dodson, K. Ajuwon, M. Azain, K. M. Barnes, L. L. Guan, Z. Jiang, S. P. Poulos, R. D. Sainz, S. Smith, & M. Spurlock. 2009. Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 87: 1218-1246. https://doi.org/10.2527/jas.2008-1427

Herman, M. A., O. D. Peroni, J. Villoria, M. R. Schön, N. A. Abumrad, M. Blüher, S. Klein, & B. B. Kahn. 2012. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484: 333. https://doi.org/10.1038/nature10986

Hong, Y. H., Y. Nishimura, D. Hishikawa, H. Tsuzuki, H. Miyahara, C. Gotoh, K. C. Choi, D. D. Feng, C. Chen, H. G. Lee, & K. Katoh. 2005. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, no. 12: 5092-5099. https://doi.org/10.1210/en.2005-0545

Huang, Y., A. K. Das, Q. Y. Yang, M. J. Zhu, & M. Du. 2012. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells. PloS one 7: e47496. https://doi.org/10.1371/journal.pone.0047496

Hudak, C. S. & H. S. Sul. 2013.Pref-1, a gatekeeper of adipogenesis. Front Endocrinol. 4: 79. https://doi.org/10.3389/fendo.2013.00079

Kras, K. M., D. B. Hausman, G. J. Hausman, & R. J. Martin. 1999. Adipocyte development is dependent upon stem cell recruitment and proliferation of preadipocytes. Obes. Res. 7: 491-497. https://doi.org/10.1002/j.1550-8528.1999.tb00438.x

Lee, S. H., C. Gondro, J. V. D. Werf, N. K. Kim, D. J. Lim, E. W. Park, S. J. Oh, J. P. Gibson, & J. M. Thompson. 2010. Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean Cattle). BMC Genomics 11: 623. https://doi.org/10.1186/1471-2164-11-623

Machinal-Quelin, F., M. N. Dieudonne, M. C. Leneveu, R. Pecquery, & Y. Giudicelli. 2002. Proadipogenic effect of leptin on rat preadipocytes in vitro: activation of MAPK and STAT3 signaling pathways. Am. J. Physiol. Cell Physiol. 282: C853-C863. https://doi.org/10.1152/ajpcell.00331.2001

McDonald, P. 2002. Animal Nutrition. Pearson Education Publisher.

Moseti, D., A. Regassa, & W. K. Kim. 2016. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int. J. Mol. Sci. 17: 124. https://doi.org/10.3390/ijms17010124

Nayananjalie, W. A. D., T. R. Wiles, D. E. Gerrard, M. A. McCann, & M. D. Hanigan. 2015. Acetate and glucose incorporation into subcutaneous, intramuscular, and visceral fat of finishing steers. J. Anim. Sci. 93: 2451-2459. https://doi.org/10.2527/jas.2014-8374

Ntambi, J. M. & K. Young-Cheul. 2000. Adipocyte differentiation and gene expression. J. Nutr. 130: 3122S-3126S. https://doi.org/10.1093/jn/130.12.3122S

Otto, T. C. & M. D. Lane. 2005. Adipose development: from stem cell to adipocyte. Crit. Rev. Biochem. Mol. Biol. 40: 229-242. https://doi.org/10.1080/10409230591008189

Rosen, E. D. & O. A. MacDougald. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7: 885. https://doi.org/10.1038/nrm2066

Rutkowski, J. M., J. H. Stern, & P. E. Scherer. 2015. The cell biology of fat expansion. J. Cell Biol. 208: 501-512. https://doi.org/10.1083/jcb.201409063

Russell, J. B. 1998. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J. Dairy Sci. 81: 3222-3230. https://doi.org/10.3168/jds.S0022-0302(98)75886-2

Shao, M., J. Ishibashi, C. M. Kusminski, Q. A. Wang, C. Hepler, L. Vishvanath, K. A. MacPherson, S. B. Spurgin, K. Sun, W. L. Holland, & P. Seale. 2016. Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program. Cell Metab. 23: 1167-1184. https://doi.org/10.1016/j.cmet.2016.04.023

Smith, S. B & B. J. Johnson. 2016. Marbling: management of cattle to maximize the deposition of intramuscular adipose tissue. J. Anim. Sci. 94: 382. https://doi.org/10.2527/jam2016-0794

Torii, S., T. Matsui, & H. Yano. 1996. Development of intramuscular fat in Wagyu beef cattle depends on adipogenic or antiadipogenic substances present in serum. Animal Sci. J. 63: 73-78. https://doi.org/10.1017/S1357729800028307

Vishvanath, L., K. A. MacPherson, K. Hepler, Q. A. Wang, M. Shao, S. B. Spurgin, M. Y. Wang, C. M. Kusminski, T. S. Morley, & R. K. Gupta. 2016. Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab. 23: 350-359. https://doi.org/10.1016/j.cmet.2015.10.018

Wan, R., J. P. Du, L. P. Ren, & Q. X. Meng. 2009. Selective adipogenic effects of propionate on bovine intramuscular and subcutaneous preadipocytes. Meat Sci. 82: 372-378. https://doi.org/10.1016/j.meatsci.2009.02.008

Wang, Y., L. Zhao, C. Smas, & H. S. Sul. 2010. Pref-1 interacts with fibronectin to inhibit adipocyte differentiation. Mol. Cell Biol. 30: 3480-3492. https://doi.org/10.1128/MCB.00057-10

Wattiaux, M. A. 1996. Dairy essentials reproduction and genetic selection. Birth 42, no. 32: 25.

Wheeler, T. L., L. V. Cundiff, & R. M. Koch. 1994. Effect of marbling degree on beef palatability in Bostaurus and Bosindicus cattle. J. Anim. Sci. 72: 3145-3151. https://doi.org/10.2527/1994.72123145x

Zivkovic, A. M., J. B. German, & A. J. Sanyal. 2007. Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am. J. Clin. Nutr. 86: 285-300. https://doi.org/10.1093/ajcn/86.2.285




DOI: http://dx.doi.org/10.5398/tasj.2018.41.3.207

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Tropical Animal Science Journal


Editorial Office

Tropical Animal Science Journal

Faculty of Animal Science Building, Bogor Agricultural University
Jln Agatis, Kampus IPB Darmaga, Bogor 16680, Indonesia
Phone/Fax.: +62-251-8421692
e-mail: mediapeternakan@apps.ipb.ac.id; mediapeternakan@yahoo.co.id
p-ISSN: 2615-787X  e-ISSN: 2615-790X
 
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.