Phenotypic and Resistance Patterns of Avian Pathogenic Escherichia coli Isolated from Commercial Poultry Farm

N. P. V. T. Timur(1) , Y. P. Kristianingrum(2) , I. W. Suardana(3) , M. H. Wibowo(4)
(1) Veterinary Science Doctoral Study Program, Faculty of Veterinary Medicine, Universitas Gadjah Mada,
(2) Department of Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada,
(3) Veterinary Public Health Department, Faculty of Veterinary Medicine, Universitas Udayana,
(4) Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada

Abstract

Colibacillosis in poultry is induced by avian pathogenic Escherichia coli (APEC). No relevant studies have been extensively published in Indonesia. Colibacillosis can affect various poultry species, resulting in significant economic losses to Indonesia’s poultry industry. The efficacy of colibacillosis treatment depends on the antibiotic sensitivity of the causative pathogen. This study aims to determine the phenotypic traits, pathological pictures, and antibiotic susceptibility of APEC bacteria isolated from colibacillosis cases in commercial farms in the Special Region of Yogyakarta and Central Java. Organ samples were collected from broiler and layer chickens suspected of having colibacillosis. The results of cultured, biochemical tests, pathological examinations, pathogenicity, and hemolysis testing confirmed 21 APEC isolates. The antibiotic susceptibility of the isolates was determined against nine different antibiotics. Pathological examination revealed severe macroscopic changes, including polyserositis (perihepatitis, pericarditis, and air sacculitis), accompanied by microscopic evidence of necrosis and widespread heterophilic inflammatory cell infiltration across the lungs, cardiac pericardium, and ovaries. The resistance patterns of the samples to nine antibiotics, ranked from highest to lowest, were as follows: amoxicillin, enrofloxacin, streptomycin, trimethoprim-sulfamethoxazole, nalidixic acid, oxytetracycline, tetracycline, gentamicin, and neomycin. The highest resistance was observed against β-lactam antibiotics. The APEC isolates displayed high pathogenicity, characterized by typical gross and histopathological lesions of colibacillosis, including polyserositis. Crucially, the high prevalence of multidrug resistance (MDR) against nine tested antibiotics (71.43%), particularly to amoxicillin, poses a serious challenge to effective colibacillosis treatment in the studied regions and necessitates a strategic shift in antibiotic usage policies.

Full text article

Generated from XML file

References

Abalaka, S., Sani, N., Idoko, I., Tenuche, O., Oyelowo, F., Ejeh, S., & Enem, S. (2017). Pathological changes associated with an outbreak of colibacillosis in a commercial broiler flock. Sokoto Journal of Veterinary Sciences, 15(3), 95. https://doi.org/10.4314/sokjvs.v15i3.14

Abdelhamid, M. K., Hess, C., Bilic, I., Glösmann, M., Rehman, H. U., Liebhart, D., Hess, M., & Paudel, S. (2024). A comprehensive study of colisepticaemia progression in layer chickens applying novel tools elucidates pathogenesis and transmission of Escherichia coli into eggs. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-58706-3

Aberkane, C., Messaï, A., Messaï, C. R., & Boussaada, T. (2023). Antimicrobial resistance pattern of avian pathogenic Escherichia coli with detection of extended-spectrum β-lactamase-producing isolates in broilers in east Algeria. Veterinary World, 16(3), 449–454. https://doi.org/10.14202/vetworld.2023.449-454

Abreu, R., Semedo-Lemsaddek, T., Cunha, E., Tavares, L., & Oliveira, M. (2023). Antimicrobial drug resistance in poultry production: current status and innovative strategies for bacterial control. Microorganisms, 11(4). https://doi.org/10.3390/microorganisms11040953

Afayibo, D. J. A., Zhu, H., Zhang, B., Yao, L., Abdelgawad, H. A., Tian, M., Qi, J., Liu, Y., & Wang, S. (2022). Isolation, molecular characterization, and antibiotic resistance of avian pathogenic Escherichia coli in Eastern China. Veterinary Sciences, 9(7), 319. https://doi.org/10.3390/vetsci9070319

Ahmed, S. K., Hussein, S., Qurbani, K., Ibrahim, R. H., Fareeq, A., Mahmood, K. A., & Mohamed, M. G. (2024). Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health, 2, 100081. https://doi.org/10.1016/j.glmedi.2024.100081

Apostolakos, I., Laconi, A., Mughini-Gras, L., Yapicier, Ö. Ş., & Piccirillo, A. (2021). Occurrence of Colibacillosis in broilers and its relationship with avian pathogenic Escherichia coli (APEC) population structure and molecular characteristics. Frontiers in Veterinary Science, 8, 737720. https://doi.org/10.3389/fvets.2021.737720

Basavaraju, M., & Gunashree, B. S. (2023). Escherichia coli: an overview of main characteristics. In Escherichia coli - old and new insights. IntechOpen. https://doi.org/10.5772/intechopen.105508

Berkhoff, H. A., & Vinal, A. C. (1985). Congo red medium to distinguish between invasive and non-invasive Escherichia coli pathogenic for poultry. Avian Disease, 30(1), 117–121. https://doi.org/10.2307/1590621

Bhalerao, A. K. D., Gupta, R. P., & Kumari, M. (2013). Pathological studies of natural cases of colibacillosis in Harguna State. The Haryana Veterinarian, 52, 118–120. https://www.luvas.edu.in/haryana-veterinarian/download/harvet2013/34.pdf

Bisping, W., & Amtsberg, G. (1988). Colour atlas for the diagnosis of bacterial pathogens in animals. In W. G. Siller & J. Phillips (Eds.). Paul Parey Scientific Publisher.

Bonnet, M., Lagier, J. C., Raoult, D., & Khelaifia, S. (2020). Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes and New Infections, 34. https://doi.org/10.1016/j.nmni.2019.100622

Buxton, A., & Fraser, G. (1977). Animal microbiology. Blackwell Scientific Publications.

Buxton, R. (2005). Blood agar plates and hemolysis protocols. American Society for Microbiology. www.asmscience.org

Caneschi, A., Bardhi, A., Barbarossa, A., & Zaghini, A. (2023). The use of antibiotics and antimicrobial resistance in veterinary medicine, a complex phenomenon: a narrative review. Antibiotics, 12(3). https://doi.org/10.3390/antibiotics12030487

Choisy, M., Van Cuong, N., Bao, T. D., Kiet, B. T., Hien, B. V., Thu, H. V., Chansiripornchai, N., Setyawan, E., Thwaites, G., Rushton, J., & Carrique-Mas, J. (2019). Assessing antimicrobial misuse in small-scale chicken farms in Vietnam from an observational study. BMC Veterinary Research, 15(1), 206. https://doi.org/10.1186/s12917-019-1947-0

Clinical and Laboratory Standards Institute (CLSI). (2023). M100 performance standards for antimicrobial susceptibility testing (33rd ed.). Clinical and Laboratory Standards Institute. www.clsi.org.

Clinical and Laboratory Standards Institute (CLSI). (2024). Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals (7th ed.). Clinical and Laboratory Standards Institute. www.clsi.org.

Daga, A. P., Koga, V. L., Soncini, J. G. M., De Matos, C. M., Perugini, M. R. E., Pelisson, M., Kobayashi, R. K. T., & Vespero, E. C. (2019). Escherichia coli bloodstream infections in patients at a university hospital: virulence factors and clinical characteristics. Frontiers in Cellular and Infection Microbiology, 9. https://doi.org/10.3389/fcimb.2019.00191

Denissen, J., Reyneke, B., Waso-Reyneke, M., Havenga, B., Barnard, T., Khan, S., & Khan, W. (2022). Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. International Journal of Hygiene and Environmental Health, 244. https://doi.org/10.1016/j.ijheh.2022.114006

Dezanet, C., Kempf, J., Mingeot-Leclercq, M. P., & Décout, J. L. (2020). Amphiphilic aminoglycosides as medicinal agents. International Journal of Molecular Sciences, 21(19), 1–37. https://doi.org/10.3390/ijms21197411

Galindo-Méndez, M. (2020). Antimicrobial Resistance in Escherichia coli. In E. coli Infections - Importance of Early Diagnosis and Efficient Treatment. IntechOpen. https://doi.org/10.5772/intechopen.93115

Ghahramani, Z., Mosleh, N., Shomali, T., Nazifi, S., & Khodakaram-Tafti, A. (2024). A study on selected responses and immune structures of broiler chickens with experimental colibacillosis with or without florfenicol administration. BMC Veterinary Research, 20(1), 371. https://doi.org/10.1186/s12917-024-04232-3

Grabowski, Ł., Gaffke, L., Pierzynowska, K., Cyske, Z., Choszcz, M., Węgrzyn, G., & Węgrzyn, A. (2022). Enrofloxacin—the ruthless killer of eukaryotic cells or the last hope in the fight against bacterial infections? International Journal of Molecular Sciences, 23(7), 3648. https://doi.org/10.3390/ijms23073648

Guardabassi, L., Apley, M., Olsen, J. E., Toutain, P.-L., & Weese, S. (2018). Optimization of antimicrobial treatment to minimize resistance selection. Microbiology Spectrum, 6(3). https://doi.org/10.1128/microbiolspec.ARBA-0018-2017

Hardiati, A., Wayan Teguh Wibawan, I., & Hasmi Pasaribu, F. (2021). Phenotypic and genotypic study of antibiotics resistance profile in Escherichia coli isolated from broilers farm in Cianjur, Indonesia. Acta Veterinaria Indonesiana, 9(2), 97–104. https://doi.org/10.29244/avi.9.2.97-104

Huemer, M., Mairpady Shambat, S., Brugger, S. D., & Zinkernagel, A. S. (2020). Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Reports, 21(12). https://doi.org/10.15252/embr.202051034

Ibrahim, R. A., Cryer, T. L., Lafi, S. Q., Basha, E. A., Good, L., & Tarazi, Y. H. (2019). Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Veterinary Research, 15(1), 159. https://doi.org/10.1186/s12917-019-1901-1

Islam, M. A., Bose, P., Rahman, M. Z., Muktaruzzaman, M., Sultana, P., Ahamed, T., & Khatun, M. M. (2024). A review of antimicrobial usage practice in livestock and poultry production and its consequences on human and animal health. Journal of Advanced Veterinary and Animal Research, 11(3), 675–685. https://doi.org/10.5455/javar.2024.k817

Jahantigh, M., Samadi, K., Dizaji, R. E., & Salari, S. (2020). Antimicrobial resistance and prevalence of tetracycline resistance genes in Escherichia coli isolated from lesions of colibacillosis in broiler chickens in Sistan, Iran. BMC Veterinary Research, 16(1). https://doi.org/10.1186/s12917-020-02488-z

Jian, Z., Zeng, L., Xu, T., Sun, S., Yan, S., Yang, L., Huang, Y., Jia, J., & Dou, T. (2021). Antibiotic resistance genes in bacteria: Occurrence, spread, and control. Journal of Basic Microbiology, 61(12), 1049–1070. https://doi.org/10.1002/jobm.202100201

Jørgensen, S. L., Stegger, M., Kudirkiene, E., Lilje, B., Poulsen, L. L., Ronco, T., Pires Dos Santos, T., Kiil, K., Bisgaard, M., Pedersen, K., Nolan, L. K., Price, L. B., Olsen, R. H., Andersen, P. S., & Christensen, H. (2019). Diversity and population overlap between avian and human Escherichia coli belonging to sequence type 95. MSphere, 4(1). https://doi.org/10.1128/mSphere.00333-18

Kathayat, D., Lokesh, D., Ranjit, S., & Rajashekara, G. (2021). Avian Pathogenic Escherichia coli (APEC): An overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. Pathogens, 10(4), 467. https://doi.org/10.3390/pathogens10040467

Larsson, D. G. J., & Flach, C. F. (2022). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20(5), 257–269. https://doi.org/10.1038/s41579-021-00649-x

Li, Q., Fang, W., Chen, S., Li, G., Jiang, C., Zhuang, Y., Li, L., Liu, P., Guo, X., Hu, G., Liu, P., & Gao, X. (2024). Characterization of Escherichia coli pathogenicity and drug resistance in yolk peritonitis. Poultry Science, 103(7), 103814. https://doi.org/10.1016/j.psj.2024.103814

Meena, P. R., Yadav, P., Hemlata, H., Tejavath, K. K., & Singh, A. P. (2021). Poultry-origin extraintestinal Escherichia coli strains carrying the traits associated with urinary tract infection, sepsis, meningitis and avian colibacillosis in India. Journal of Applied Microbiology, 130(6), 2087–2101. https://doi.org/10.1111/jam.14905

Meha, H. K. M., Berata, I. K., & Kardena, I. M. (2016). Derajat keparahan patologi usus dan paru babi penderita kolibasilosis. Indonesia Medicus Veterinus, 5(1), 13–22.

Mehat, J. W., van Vliet, A. H. M., & La Ragione, R. M. (2021). The Avian Pathogenic Escherichia coli (APEC) pathotype is comprised of multiple distinct, independent genotypes. Avian Pathology, 50(5), 402–416. https://doi.org/10.1080/03079457.2021.1915960

Naghavi, M., Murray, C. J. L., Ikuta, K. S., Mestrovic, T., Swetschinski, L., & Sartorius, B. (2022). Global burden of antimicrobial resistance: essential pieces of a global puzzle – Authors’ reply. The Lancet, 399(10344), 2349–2350. https://doi.org/10.1016/S0140-6736(22)00947-3

Nechypurenko, O. O., Avdeeva, L. V., Dreval, D. V., & Sobko, I. O. (2024). Avian Pathogenic Escherichia coli and its antibiotic resistance. Microbiological Journal, 86(5), 61–74. https://doi.org/10.15407/microbiolj86.05.061

Nolan, L. K., Vaillancourt, J. P., Barbieri, N. L., & Logue, C. M. (2013). Diseases of poultry (13th ed.). In D. E. Swayne, J. R. Glisson, L. R. McDougald, L. K. Nolan, D. L. Suarez, & V. L. Nair (Eds.). Wiley-Blackwell.

Nolan, L. K., Vaillancourt, J.-P., Barbieri, N. L., & Logue, C. M. (2020). Diseases of poultry (14th ed.) In D. E. Swayne, M. Boulianne, C. M. Logue, L. R. McDougald, V. Nair, & D. L. Suarez (Eds.). Wiley Blackwell. https://doi.org/10.1002/9781119371199.ch18

Osman, K. M., Kappell, A. D., Elhadidy, M., Elmougy, F., El-Ghany, W. A. A., Orabi, A., Mubarak, A. S., Dawoud, T. M., Hemeg, H. A., Moussa, I. M. I., Hessain, A. M., & Yousef, H. M. Y. (2018). Poultry hatcheries as potential reservoirs for antimicrobial-resistant Escherichia coli: A risk to public health and food safety. Scientific Reports, 8(1), 5859. https://doi.org/10.1038/s41598-018-23962-7

Ozaki, H., Yonehara, K., & Murase, T. (2018). Virulence of Escherichia coli isolates obtained from layer chickens with colibacillosis associated with pericarditis, perihepatitis, and salpingitis in experimentally infected chicks and embryonated eggs. Avian Diseases, 62(2), 233–236. https://doi.org/10.1637/11685-060717-ResNote.1

Panth, Y. (2019). Colibacillosis in poultry: A review. Journal of Agriculture and Natural Resources, 2(1), 301–311. https://doi.org/10.3126/janr.v2i1.26094

Saha, O., Hoque, M. N., Islam, O. K., Rahaman, M. M., Sultana, M., & Anwar Hossain, M. (2020). Multidrug-resistant avian pathogenic Escherichia coli strains and association of their virulence genes in Bangladesh. Microorganisms, 8(8), 1–24. https://doi.org/10.3390/microorganisms8081135

Salam, H. S. H., Abo El-Ela, F. I., Hamra, S. A., Ismail, I. I., & Abd Elgied, O. A. (2024). Antimicrobial resistance and virulence factors in chicken-derived E. coli isolates. Journal of Advanced Veterinary Research, 14(1), 48–54.

Sgariglia, E., Mandolini, N. A., Napoleoni, M., Medici, L., Fraticelli, R., Conquista, M., Gianfelici, P., Staffolani, M., Fisichella, S., Capuccella, M., Sargenti, M., & Perugini, G. (2019). Antibiotic resistance pattern and virulence genes in avian pathogenic Escherichia coli (APEC) from different breeding systems. Veterinaria Italiana, 55(1), 27–33.

Sora, V. M., Meroni, G., Martino, P. A., Soggiu, A., Bonizzi, L., & Zecconi, A. (2021). Extraintestinal pathogenic Escherichia coli: Virulence factors and antibiotic resistance. Pathogens, 10(11). https://doi.org/10.3390/pathogens10111355

Stastny, K., Hodkovicova, N., Jerabek, M., Petren, M., Viskova, M., Papouskova, A., Bartejsova, I., Putecova-Tosnerova, K., Charvatova, M., Zouharova, M., Matiaskova, K., & Nedbalcova, K. (2024). Dosage optimisation of trimethoprim and sulfamethoxazole for the treatment of an avian pathogenic strain of Escherichia coli in broiler chickens. Antibiotics, 13(1). https://doi.org/10.3390/antibiotics13010011

Taunde, P. A., Bianchi, M. V., Mathai, V. M., De Lorenzo, C., Gaspar, B. D. C. B., Correia, I. M. S. M., Laisse, C. J. M., & Driemeier, D. (2021). Pathological, microbiological and immunohistochemical characterization of avian colibacillosis in broiler chickens of Mozambique. Pesquisa Veterinaria Brasileira, 41. https://doi.org/10.1590/1678-5150-pvb-6831

Temmerman, R., Pelligand, L., Schelstraete, W., Antonissen, G., Garmyn, A., & Devreese, M. (2021). Enrofloxacin dose optimization for the treatment of colibacillosis in broiler chickens using a drinking behaviour pharmacokinetic model. Antibiotics, 10(5). https://doi.org/10.3390/antibiotics10050604

Ugwu, I. C., Lee-Ching, L., Ugwu, C. C., Okoye, J. O. A., & Chah, K. F. (2020). In vitro assessment of pathogenicity and virulence encoding gene profiles of avian pathogenic Escherichia coli strains associated with colibacillosis in chickens. Iranian Journal of Veterinary Research, 21(3), 180–187.

Ungemach, F. R., Müller-Bahrdt, D., & Abraham, G. (2006). Guidelines for prudent use of antimicrobials and their implications on antibiotic usage in veterinary medicine. International Journal of Medical Microbiology, 296(2), 33–38. https://doi.org/10.1016/j.ijmm.2006.01.059

Wibisono, F. J., Sumiarto, B., & Kusumastuti, T. A. (2018). Economic losses estimation of pathogenic Escherichia coli infection in Indonesian poultry farming. Buletin Peternakan, 42(4). https://doi.org/10.21059/buletinpeternak.v42i4.37505

Authors

N. P. V. T. Timur
Y. P. Kristianingrum
I. W. Suardana
M. H. Wibowo
mhwibowo@ugm.ac.id (Primary Contact)
Timur, N. P. V. T., Kristianingrum, Y. P., Suardana, I. W., & Wibowo, M. H. (2025). Phenotypic and Resistance Patterns of Avian Pathogenic Escherichia coli Isolated from Commercial Poultry Farm. Tropical Animal Science Journal, 49(1), 79-87. https://doi.org/10.5398/tasj.2026.49.1.79

Article Details

How to Cite

Timur, N. P. V. T., Kristianingrum, Y. P., Suardana, I. W., & Wibowo, M. H. (2025). Phenotypic and Resistance Patterns of Avian Pathogenic Escherichia coli Isolated from Commercial Poultry Farm. Tropical Animal Science Journal, 49(1), 79-87. https://doi.org/10.5398/tasj.2026.49.1.79