Ingestive Behavior of Dairy Cattle in Two Contrasting Tropical Production Systems in Colombia

S. Montoya(1) , M. P. García(2) , A. M. Orozco(3) , J. F. Suarez(4) , C. S. Escobar(5) , W. A. Tapie(6)
(1) Grupo de investigación en Agronomía y Zootecnia-GIAZ, Universidad Católica de Oriente,
(2) Grupo de investigación en Agronomía y Zootecnia-GIAZ, Universidad Católica de Oriente,
(3) Grupo de investigación en Agronomía y Zootecnia-GIAZ, Universidad Católica de Oriente,
(4) Centro para la Investigación en Sistemas Sostenibles de Producción Agropecuaria – CIPAV,
(5) Facultad de Medicina Veterinaria y Zootecnia de la Universidad CES,
(6) Grupo de investigación en Agronomía y Zootecnia-GIAZ, Universidad Católica de Oriente

Abstract

In dairy cattle, ingestive behavior is influenced by environmental, nutritional, and management factors. The objective of the study was to describe the ingestive behavior and productive performance of dairy cows in two contrasting dairy production systems in Colombia: a lowland system at 941 m above sea level (a.s.l.) with Lucerna cows, and a highland system at 2500 m a.s.l. with Holstein cows. The temperature-humidity index (THI), forage and water intake, as well as behavioral patterns, were monitored under each system. In the lowland system, the THI values exceeded 85 during afternoon hours, reaching emergency levels; however, Lucerna cows exhibited no clinical signs of heat stress, suggesting thermal resilience. In the highland region, THI remained within the alert range (72-79). Dry matter intake (DMI) as a percentage of body weight was 2.42% in the lowland system and 1.68% in the highland system. Feed efficiency was lower in the lowland system (69.56%) than in the highland system (96.67%). Milk yield per unit of metabolic body weight (BW0.75) was 0.119 kg/kg BW0.75 in the lowland system and 0.206 kg/kg BW0.75 in the highland system. Water intake per 100 kg of body weight was 13.31 L in the lowland system and 16.12 L in the highland system. Forage quality was superior in the highland system, with greater crude protein levels and lower fiber content. Both systems showed metabolizable energy deficits, which increased when accounting for energy expenditures associated with walking. These findings underscore the critical need to tailor management strategies to the unique environmental and nutritional conditions of each production system, thereby enhancing animal welfare and optimizing productivity.

Full text article

Generated from XML file

References

Alvarado, V., Medrano, J., Haro, J., Castro, J., Dickhoefer, U., & Gómez, C. (2021). Enteric methane emissions from lactating dairy cows grazing cultivated and native pastures in the high Andes of Peru. Livestock Science, 243, 104385. https://doi.org/10.1016/j.livsci.2020.104385

Antanaitis, R., Džermeikaitė, K., Krištolaitytė, J., Girdauskaitė, A., Arlauskaitė, S., Tolkačiovaitė, K., & Baumgartner, W. (2024). The relation between milk lactose concentration and the rumination, feeding, and locomotion behavior of early-lactation dairy cows. Animals, 14(6), 836. https://doi.org/10.3390/ani14060836

AOAC International. (2019). Métodos oficiales de análisis de la AOAC Internacional (21st ed.). AOAC International.

Avellaneda, Y., Mancipe, E., & Vargas, J. (2022). Ingestive behavior and dry matter intake of dairy cattle grazing Kikuyu grass (Cenchrus clandestinus) pastures. Tropical Grasslands-Forrajes Tropicales, 10(3), 261-270. https://doi.org/10.17138/tgft(10)261-270

Boval, M., & Sauvant, D. (2019). Ingestive behaviour of grazing ruminants: meta-analysis of the components of bite mass. Animal Feed Science and Technology, 251, 96-111. https://doi.org/10.1016/j.anifeedsci.2019.03.002

Chará, J., Rivera, J., Barahona, R., Murgueitio, E., Calle, Z., & Giraldo, C. (2019). Intensive silvopastoral systems with Leucaena leucocephala in Latin America. Tropical Grasslands-Forrajes Tropicales, 7(4), 259-266. https://doi.org/10.17138/tgft(7)259-266

Chen, L., Thorup, V. M., Kudahl, A. B., & Østergaard, S. (2024). Effects of heat stress on feed intake, milk yield, milk composition, and feed efficiency in dairy cows: A meta-analysis. Journal of Dairy Science, 107(5), 3207-3218. https://doi.org/10.3168/jds.2023-24059

de Oliveira, C. C., de Almeida, R. G., Junior, N. K., Villela, S. D. J., Bungenstab, D. J., & Alves, F. V. (2021). Daytime ingestive behaviour of grazing heifers under tropical silvopastoral systems: Responses to shade and grazing management. Applied Animal Behaviour Science, 240, 105360. https://doi.org/10.1016/j.applanim.2021.105360

Dickinson, E. R., Stephens, P. A., Marks, N. J., Wilson, R. P., & Scantlebury, D. M. (2021). Behaviour, temperature and terrain slope impact estimates of energy expenditure using oxygen and dynamic body acceleration. Animal Biotelemetry, 9, 47. https://doi.org/10.1186/s40317-021-00269-5

Durana, C., Murgueitio, E., & Murgueitio, B. (2023). Sustainability of dairy farming in Colombia’s High Andean region. Frontiers in Sustainable Food Systems, 7, 1223184. https://doi.org/10.3389/fsufs.2023.1223184

Enciso, K., Castillo, J., Albarracín, L. O., Campuzano, L. F., Sotelo, M., & Burkart, S. (2021). Avena sativa AV25-T (Altoandina) supplementation as alternative for Colombia’s high-altitude dairy systems: an economic analysis. Frontiers in Sustainable Food Systems, 5, 758308. https://doi.org/10.3389/fsufs.2021.758308

Ferreira, H. C., Carvalho, C. C. S., Monção, F. P., Rocha Júnior, V. R., Ruas, J. R. M., da Costa, M. D., de Jesus, M. A., Magalhães Gonçalves, M. C., Mendes Rocha, H. C., Gomes Ribas, W. F., Delvaux Júnior, N. A., Alencar Chamone, J. M., & Sampaio Rigueira, J. P. (2021). Effect of shading strategies on intake, digestibility, respiratory rate, feeding behaviour, and performance of feedlot-finished Nellore bulls in the semi-arid region of Brazil. Italian Journal of Animal Science, 20(1), 1759-1769. https://doi.org/10.1080/1828051X.2021.1912662

Gaviria, X., Castro, J., Bolívar, D. M., Molina, I., Chirinda, N., Dickhoefer, U., Barahona, R., & Arango, J. (2022). The effects of two species of Leucaena on in vitro rumen fermentation, methane production and post-ruminal protein supply in diets based on Urochloa hybrid cv. Cayman. Agronomy, 12(3), 629. https://doi.org/10.3390/agronomy12030629

Gonçalves, P., Magalhães, J., & Corujo, D. (2024). Estimating the energy expenditure of grazing farm animals based on dynamic body acceleration. Animals, 14(15), 2140. https://doi.org/10.3390/ani14152140

Habimana, V., Ekine-Dzivenu, C. C., Nguluma, A. S., Nziku, Z. C., Morota, G., Chenyambuga, S. W., & Mrode, R. (2023). Genes and models for estimating genetic parameters for heat tolerance in dairy cattle. Frontiers in Genetics, 14, 1127175. https://doi.org/10.3389/fgene.2023.1127175

Haydock, K. P., & Shaw, N. H. (1975). The comparative yield method for estimating dry matter yield of pasture. Australian Journal of Experimental Agriculture and Animal Husbandry, 15, 663–670. https://doi.org/10.1071/EA9750663

Heublein, C., Dohme-Meier, F., Südekum, K. H., Bruckmaier, R. M., Thanner, S., & Schori, F. (2017). Impact of cow strain and concentrate supplementation on grazing behaviour, milk yield and metabolic state of dairy cows in an organic pasture-based feeding system. Animal, 11(7), 1163-1173. https://doi.org/10.1017/S1751731116002639

Holdridge, L. R. (1967). Life zone ecology. Tropical Science Center.

Iqbal, M. W., Draganova, I., Henry Morel, P. C., & Todd Morris, S. (2023). Variations in the 24 h temporal patterns and time budgets of grazing, rumination, and idling behaviors in grazing dairy cows in a New Zealand system. Journal of Animal Science, 101, skad038. https://doi.org/10.1093/jas/skad038

Kibler, H. H. (1964). Thermal effects of various temperature-humidity combinations on Holstein cattle as measured by eight physiological responses. University of Missouri Agricultural Experiment Station Research Bulletin 862.

Llonch, P., Mainau, E., Ipharraguerre, I. R., Bargo, F., Tedó, G., Blanch, M., & Manteca, X. (2018). Chicken or the egg: the reciprocal association between feeding behavior and animal welfare and their impact on productivity in dairy cows. Frontiers in Veterinary Science, 5, 305. https://doi.org/10.3389/fvets.2018.00305

Montoya, S., Chará, J. D., Murgueitio, E., Correa-Londoño, G. A., & Barahona, R. (2023). Producción forrajera y consumo en ganaderías colombianas con diversos sistemas de pastoreo incluyendo sistemas silvopastoriles. Livestock Research for Rural Development, 35(7).

Muñoz, E. C., Andriamandroso, A. L., Blaise, Y., Ron, L., Montufar, C., Kinkela, P. M., Lebeau, F., & Bindelle, J. (2020). How do management practices and farm structure impact productive performances of dairy cattle in the province of Pichincha, Ecuador. Journal of Agriculture and Rural Development in the Tropics and Subtropics (JARTS), 121(2), 233-241.

National Research Council. (2001). Nutrient requirements of dairy cattle (7th rev. ed.). National Academy Press.

Neave, H. W., Edwards, J. P., Thoday, H., Saunders, K., Zobel, G., & Webster, J. R. (2021). Do walking distance and time away from the paddock influence daily behaviour patterns and milk yield of grazing dairy cows?. Animals, 11(10), 2903. https://doi.org/10.3390/ani11102903

Pérez, V. M., López, S., Pérez, S., Pérez, P., Castillo, E., & Jarillo, J. (2024). Effect of tree shade on behavior and haircoat temperature of grazing dual-purpose cows in a hot and humid tropical environment. Agroforestry Systems, 98(1), 165-178. https://doi.org/10.1007/s10457-023-00897-1

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

Reis, N. S., Ferreira, I. C., Mazocco, L. A., Souza, A. C. B., Pinho, G. A., da Fonseca Neto, Á. M., Malaquias, J. V., Macena, F. A., Muller, A. G., Martins, C. F., Balbino, L. C., & McManus, C. M. (2021). Shade modifies behavioral and physiological responses of low to medium production dairy cows at pasture in an integrated crop-livestock-forest system. Animals, 11(8), 2411. https://doi.org/10.3390/ani11082411

Setz, E. Z. F. (1991). Métodos de quantificação de comportamento de primatas em estudos de campo. A Primatologia No Brasil, 3, 411–435.

Talmón, D., Jasinsky, A., Marin, F., Menegazzi, G., Chilibroste, P., & Carriquiry, M. (2025). Estimation of the energy cost of activities in grazing dairy cows using the oxygen pulse–heart rate method. Journal of Dairy Science, 108(6), 5847-5859. https://doi.org/10.3168/jds.2024-25756

Thornton, P., Nelson, G., Mayberry, D., & Herrero, M. (2022). Impacts of heat stress on global cattle production during the 21st century: A modelling study. The Lancet Planetary Health, 6(3), e192–e201. https://doi.org/10.1016/S2542-5196(22)00002-X

Uribe, S. M., Orozco, J. D. C., Restrepo, E. M., Londoño, G. A. C., & Rosales, R. B. (2025). Effects of intensive silvopastoral systems on bovine ingestive behavior in three contrasting tropical regions. Journal of Animal Behaviour and Biometeorology, 13(2), 2025011. https://doi.org/10.31893/jabb.2025011

Van Amburgh, M. E., Collao-Saenz, E. A., Higgs, R. J., Ross, D. A., Recktenwald, E. B., Raffrenato, E., Chase, L. E., Overton, T. R., Mills, J. K., & Foskolos, A. (2015). The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. Journal of Dairy Science, 98(9), 6361-6380. https://doi.org/10.3168/jds.2015-9378

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Wiersama, F. (2005). Appendix 1: Temperature humidity index. In J. Moran (Ed.), Tropical dairy farming: Feeding management for the small holder dairy farmers in the humid tropics (p. 275). Landlinks Press.

Authors

S. Montoya
smontoyau@gmail.com (Primary Contact)
M. P. García
A. M. Orozco
J. F. Suarez
C. S. Escobar
W. A. Tapie
Montoya, S., García, M. P., Orozco, A. M., Suarez, J. F., Escobar, C. S., & Tapie, W. A. (2025). Ingestive Behavior of Dairy Cattle in Two Contrasting Tropical Production Systems in Colombia. Tropical Animal Science Journal, 49(1), 54-62. https://doi.org/10.5398/tasj.2026.49.1.54

Article Details

How to Cite

Montoya, S., García, M. P., Orozco, A. M., Suarez, J. F., Escobar, C. S., & Tapie, W. A. (2025). Ingestive Behavior of Dairy Cattle in Two Contrasting Tropical Production Systems in Colombia. Tropical Animal Science Journal, 49(1), 54-62. https://doi.org/10.5398/tasj.2026.49.1.54