Digital Innovation in Predicting Live Body Weight of Female Ongole-Grade Cattle Using Pixel Area and Morphometric Analysis

M. I. Ali(1) , B. M. Atmaja(2) , D. Herviyanto(3) , G. Prasetyo(4) , K. Kuswati(5)
(1) Animal Feed Technology Study Program, Department of Agroindustry Technology, Politeknik Negeri Tanah Laut,
(2) Animal Feed Technology Study Program, Department of Agroindustry Technology, Politeknik Negeri Tanah Laut,
(3) Department of Animal Production, Faculty of Animal Sciences, Universitas Brawijaya,
(4) Department of Animal Production, Faculty of Animal Sciences, Universitas Brawijaya,
(5) Department of Animal Production, Faculty of Animal Sciences, Universitas Brawijaya

Abstract

This study is the first to validate digital morphometric analysis combined with linear, quadratic, and allometric regression models for predicting body weight (BW) in Ongole-Grade cattle under smallholder field conditions, focusing on productive-age females as breeding stock. The objective was to develop and validate regression-based predictive models using digital image-derived traits and to compare their accuracy with conventional measurements and existing formulas. A total of 204 female Ongole-Grade cattle were measured manually and with ImageJ-based morphometrics. All measurements were standardized to a reference age of 12 months using an allometric adjustment. Traits assessed included BW, body length (BL), withers height (WH), chest girth (CG), chest depth (CD), rump height (RH), and rump width (RW). BW showed strong positive correlations with morphometric traits (r=0.80–0.91), with CG as the strongest predictor. Conventional and image-derived measurements were comparable for WH, BL, CG, CD, and RH (p>0.05), while RW differed significantly (p=0.01). Mean differences were small (≤0.8 cm), and the mean absolute percentage error (MAPE) ranged from 1.76% to 4.89%, confirming the reliability of digital imaging. The quadratic regression model (CG² + BL²), which outperformed the linear, allometric, and pixel-area–based approaches (MAPE=4.68%; R²=0.93). In contrast, the Schoorl formula substantially overestimated BW (MAPE=37.76%), while the pixel-area model showed only moderate accuracy (R²=0.63). Overall, digital morphometric analysis provides a novel, non-invasive, and cost-effective tool for cattle monitoring, with refinement of pixel area-based features recommended.

Full text article

Generated from XML file

References

Adinata, Y., Noor, R. R., Priyanto, R., Cyrilla, L., & Sudrajad, P. (2023). Morphometric and physical characteristics of Indonesian beef cattle. Archives Animal Breeding, 66(2), 153–161. https://doi.org/10.5194/aab-66-153-2023

Ali, M. I., Atmaja, B. M., Hidayatulloh, R., Herviyanto, D., & Kuswati. (2024). Sustainability strategy and development of village breeding center: Evaluation of morphometric characteristics of female Peranakan Ongole cattle in Napis village. Journal of Tropical Animal Production, 25(2), 117–130. https://doi.org/10.21776/ub.jtapro.2024.025.02.3

Azis, R., Ciptadi, G., Wahjuningsih, S., Hariyono, D. N. H., Tribudi, Y. A., & Nurgiartiningsih, V. M. A. (2023). Prediction of body weight from body measurements in Bali cattle of Indonesia using regression analysis. Advances in Animal and Veterinary Sciences, 11(9), 1486–1491. https://doi.org/10.17582/journal.aavs/2023/11.9.1486.1491

Bousbia, A., Boudalia, S., Gueroui, Y., Hadded, K., Bouzaoui, A., Kiboub, D., & Symeon, G. (2021). Use of multivariate analysis as a tool in the morphological characterization of the main indigenous bovine ecotypes in northeastern Algeria. PLOS ONE, 16(7), e0255153. https://doi.org/10.1371/journal.pone.0255153

Brito, L. S., Cavalcante, A. K. D. S., Rodrigues, A. S., Ferraz, P. A., Bittencourt, R. F., Junior, L. D. P. M., Vasconcelos, I. C., Carôso, B. S. S., Lents, M. P., Loiola, M. V. G., Madrigal-Valverde, M., Bastos, M. C. B. B., De Brito, O. S., & Filho, A. D. L. R. (2022). Evaluation of ImageJ software in ultrasonic image analysis: follicular and luteal morphological characteristics of cattle. Animal Reproduction Science, 236, 106907. https://doi.org/10.1016/j.anireprosci.2021.106907

Cappai, M. G., Gambella, F., Piccirilli, D., Rubiu, N. G., Dimauro, C., Pazzona, A. L., & Pinna, W. (2019). Integrating the RFID identification system for Charolaise breeding bulls with 3D imaging for virtual archive creation. PeerJ Computer Science, 5, e179. https://doi.org/10.7717/peerj-cs.179

Cominotte, A., Fernandes, A., Dórea, J., Rosa, G., Torres, R., Pereira, G., Baldassini, W., & Machado Neto, O. (2023). Use of biometric images to predict body weight and hot carcass weight of Nellore cattle. Animals, 13(10), 1679. https://doi.org/10.3390/ani13101679

Cortivo, P. D., Dias, E., Barcellos, J. O. J., Peripolli, V., Costa Jr., J. B. G., Dallago, B. S. L., & McManus, C. M. (2016). Use of thermographic images to detect external parasite load in cattle. Computers and Electronics in Agriculture, 127, 413–417. https://doi.org/10.1016/j.compag.2016.07.002

Firdaus, F., Atmoko, B., Ibrahim, A., Nugroho, T., Baliarti, E., & Panjono, P. (2024). A first meta-analysis study on body weight prediction method for beef cattle based on digital image processing. Journal of Advanced Veterinary and Animal Research, 11(1), 153–160. https://doi.org/10.5455/javar.2024.k760

Gritsenko, S., Ruchay, A., Kolpakov, V., Lebedev, S., Guo, H., & Pezzuolo, A. (2023). On-barn forecasting beef cattle production based on automated non-contact body measurement system. Animals, 13(4), 611. https://doi.org/10.3390/ani13040611

Guimarães, T. P., Restle, J., Moreira, K. K. G., Freitas Neto, M. D. D., Souza, L. F. N., Moraes, É. G., & Fernandes, J. J. R. (2020). Temperament and performance of Nellore bulls classified for residual feed intake in a feedlot system. Anais Da Academia Brasileira de Ciências, 92(3), e20190222. https://doi.org/10.1590/0001-3765202020190222

Gunawan, A., & Putera, B. W. (2016). Aplikasi linier ukuran tubuh untuk seleksi fenotipik bibit induk sapi PO di kabupaten Bojonegoro. Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan, 4(3), 375–378. https://doi.org/10.29244/jipthp.4.3.375-378

Haq, M. S., Budisatria, I. G. S., Panjono, P., & Maharani, D. (2020). Prediction of live body weight using body measurements for Jawa Brebes (Jabres) cattle. The Journal of Animal and Plant Sciences, 30(3), 552–559. https://doi.org/10.36899/JAPS.2020.3.0065

Hartatik, T., Putra, D. E., Volkandari, S. D., Kanazawa, T., & Sumadi, S. (2018). Genotype analysis of partial growth hormone gene (GH891|MspI) in Pesisir cattle and Simmental-pesisir crossbred cattle. Journal of the Indonesian Tropical Animal Agriculture, 43(1), 1. https://doi.org/10.14710/jitaa.43.1.1-8

Herrera‐Camacho, J., Tırınk, C., Parra‐Cortés, R. I., Bayyurt, L., Uskenov, R., Omarova, K., Makhanbetova, A., Chekirov, K., & Chay‐Canul, A. J. (2025). Body weight estimation in Holstein × zebu crossbred heifers: Comparative analysis of XGBoost and LightGBM algorithms. Veterinary Medicine and Science, 11(4), e70422. https://doi.org/10.1002/vms3.70422

Hou, Z., Huang, L., Zhang, Q., & Miao, Y. (2023). Body weight estimation of beef cattle with 3D deep learning model: PointNet++. Computers and Electronics in Agriculture, 213, 108184. https://doi.org/10.1016/j.compag.2023.108184

Kamchen, S. G., Santos, E. F. D., Lopes, L. B., Vendrusculo, L. G., & Condotta, I. C. F. S. (2021). Application of depth sensor to estimate body mass and morphometric assessment in Nellore heifers. Livestock Science, 245, 104442. https://doi.org/10.1016/j.livsci.2021.104442

Klingenberg, C. P. (2016). Size, shape, and form: Concepts of allometry in geometric morphometrics. Development Genes and Evolution, 226(3), 113–137. https://doi.org/10.1007/s00427-016-0539-2

Kuswati, K., Ali, M. I., & Wahyuni, R. D. (2022). Morphometric characteristics of Galekan cattle breed base on principle component analysis (PCA). Jurnal Ilmu-Ilmu Peternakan, 32(1), 1–12. https://doi.org/10.21776/ub.jiip.2022.032.01.01

Lleonart, J., Salat, J., & Torres, G. J. (2000). Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology, 205(1), 85–93. https://doi.org/10.1006/jtbi.2000.2043

Lukuyu, M. N., Gibson, J. P., Savage, D. B., Duncan, A. J., Mujibi, F. D. N., & Okeyo, A. M. (2016). Use of body linear measurements to estimate liveweight of crossbred dairy cattle in smallholder farms in Kenya. Springer Plus, 5(1), 63. https://doi.org/10.1186/s40064-016-1698-3

Ma, W., Qi, X., Sun, Y., Gao, R., Ding, L., Wang, R., Peng, C., Zhang, J., Wu, J., Xu, Z., Li, M., Zhao, H., Huang, S., & Li, Q. (2024). Computer vision-based measurement techniques for livestock body dimension and weight: A review. Agriculture, 14(2), 306. https://doi.org/10.3390/agriculture14020306

Maharani, D., Fathoni, A., Sumadi, S., Hartatik, T., & Khusnudin, M. (2018). Identification of MC4R gene and its association with body weight and body size in Kebumen Ongole Grade cattle. Journal of the Indonesian Tropical Animal Agriculture, 43(2), 87–93. https://doi.org/10.14710/jitaa.43.2.87-93

Mohan, K., Kumar, P., & Kundu, A. (2025). Comparative analysis of the physical and phenotypic traits of native cattle (Bos indicus) in the Tarai region of north Bihar for conservation. Veterinary World, 18(1), 95–101. https://doi.org/10.14202/vetworld.2025.95-101

Pituch, K. A., & Stevens, J. P. (2016). Applied multivariate statistics for the social sciences: Analyses with SAS and IBM’s SPSS (Sixth edition). Routledge, Taylor and Francis Group.

Pugliesi, G., Feltrin, I. R., Mattos, A. C. D., Silva, A. G., Morelli, K. G., Nishmura, T. K., & Sales, J. N. D. S. (2024). Evolution over the last 40 years of the assisted reproductive technologies in cattle—The Brazilian perspective for embryo transfer and resynchronization programs (part II). Animal Reproduction, 21(3), e20240058. https://doi.org/10.1590/1984-3143-ar2024-0058

Putra, W. P. B., Hartati, H., Margawati, E. T., Mariyono, M., Maulana, T., & Tyasi, T. L. (2025). Polymorphism of splicing factor 3A subunit 3/PstI gene and its association with the performance of Madura cows (Bos indicus). Veterinary World, 8(5), 1306–1312. https://doi.org/10.14202/vetworld.2025.1306-1312

Ruchay, A., Kober, V., Dorofeev, K., Kolpakov, V., Gladkov, A., & Guo, H. (2022). Live weight prediction of cattle based on deep regression of RGB-D images. Agriculture, 12(11), 1794. https://doi.org/10.3390/agriculture12111794

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1), 529. https://doi.org/10.1186/s12859-017-1934-z

Silva, F. G., Carreira, E., Ramalho, J. M., Correia, T., Meira, M., Conceição, C., Silva, S. R., Pereira, A. M. F., & Cerqueira, J. L. (2024). Predicting body weight in pre-weaned Holstein–friesian calves using morphometric measurements. Animals, 14(14), 2129. https://doi.org/10.3390/ani14142129

Tasdemir, S., Urkmez, A., & Inal, S. (2011). Determination of body measurements on the Holstein cows using digital image analysis and estimation of live weight with regression analysis. Computers and Electronics in Agriculture, 76(2), 189–197. https://doi.org/10.1016/j.compag.2011.02.001

Tutkun, M. (2019). Estimation of live weight of Holstein-friesian bulls by using body linear measurements. Applied Ecology and Environmental Research, 17(2), 2257–2265. https://doi.org/10.15666/aeer/1702_22572265

Ünal, B., Güzel, B. C., Çakar, B., Aslan Kanmaz, Y., Yiğit, F., Gündemir, O., & Spataru, M.-C. (2025). Shape and size variations in the astragalus of large and small bovids. Animals, 15(3), 425. https://doi.org/10.3390/ani15030425

Vanvanhossou, S. F. U., Diogo, R. V. C., & Dossa, L. H. (2018). Estimation of live bodyweight from linear body measurements and body condition score in the West African Savannah Shorthorn cattle in North-West Benin. Cogent Food & Agriculture, 4(1), 1549767. https://doi.org/10.1080/23311932.2018.1549767

Vázquez-Martínez, I., Tirink, C., Casanova-Lugo, F., Pozo-Leyva, D., Mota-Rojas, D., Kalmagambetov, M. B., Uskenov, R., Gülboy, Ö., Garcia-Herrera, R. A., & Chay-Canul, A. J. (2024). Predicting the body weight of crossbred Holstein × Zebu dairy cows using multivariate adaptive regression splines algorithm. Journal of Dairy Research, 91(3), 267–272. https://doi.org/10.1017/S0022029924000578

Wang, Z., Shadpour, S., Chan, E., Rotondo, V., Wood, K. M., & Tulpan, D. (2021). Applications of machine learning for livestock body weight prediction from digital images. Journal of Animal Science, 99(2), skab022. https://doi.org/10.1093/jas/skab022

Xiong, Y., Condotta, I. C. F. S., Musgrave, J. A., Brown-Brandl, T. M., & Mulliniks, J. T. (2023). Estimating body weight and body condition score of mature beef cows using depth images. Translational Animal Science, 7(1), txad085. https://doi.org/10.1093/tas/txad085

Zhang, A. L. N., Wu, B. P., Jiang, C. X. H., Xuan, D. C. Z., Ma, E. Y. H., & Zhang, F. Y. A. (2018). Development and validation of a visual image analysis for monitoring the body size of sheep. Journal of Applied Animal Research, 46(1), 1004–1015. https://doi.org/10.1080/09712119.2018.1450257

Authors

M. I. Ali
B. M. Atmaja
D. Herviyanto
G. Prasetyo
K. Kuswati
kuswati_indicus@ub.ac.id (Primary Contact)
Ali, M. I., Atmaja, B. M., Herviyanto, D., Prasetyo, G., & Kuswati, K. (2025). Digital Innovation in Predicting Live Body Weight of Female Ongole-Grade Cattle Using Pixel Area and Morphometric Analysis. Tropical Animal Science Journal, 48(6), 500-507. https://doi.org/10.5398/tasj.2025.48.6.500

Article Details

How to Cite

Ali, M. I., Atmaja, B. M., Herviyanto, D., Prasetyo, G., & Kuswati, K. (2025). Digital Innovation in Predicting Live Body Weight of Female Ongole-Grade Cattle Using Pixel Area and Morphometric Analysis. Tropical Animal Science Journal, 48(6), 500-507. https://doi.org/10.5398/tasj.2025.48.6.500