In Vitro Anthelmintic Evaluation of Acanthophora spicifera Macroalgal Extract Against Haemonchus contortus in Sheep
Abstract
This study investigated the chemical composition and anthelmintic activity of Acanthophora spicifera against Haemonchus contortus from sheep in vitro. Fresh macroalgae were collected from Sepanjang Beach, Gunungkidul, Indonesia. Proximate analysis, fiber fractions, mineral composition, and color profile analysis were conducted to determine chemical profile of the macroalga. It was extracted by maceration with 96% ethanol (1:5) and ultrasonication. Secondary metabolites analyzed from the extract included total flavonoids, phenols, tannins, and saponins. The anthelmintic activity was tested in vitro through H. contortus adult worm motility and egg hatch inhibition tests. Extract treatments included P0: 0.9% physiological NaCl (negative control); P1: 0.5 mg/mL macroalgal extract; P2: 1 mg/mL macroalgal extract; P3: 1.5 mg/mL macroalgal extract; and Palb: 0.5 mg/mL albendazole (positive control). Motility test results showed that the use of macroalgae at levels of 0.5, 1, and 1.5 mg/mL significantly reduced H. contortus motility (p<0.05). However, effective LD₅₀ was reached in 1 and 1.5 mg/mL within the first 10 hours, and LD₁₀₀ after 21 hours (p<0.05). None of the extract levels matched the efficacy of albendazole (p<0.05). The egg hatch inhibition test revealed that the use of macroalgae at levels of 0.5, 1, and 1.5 mg/mL significantly inhibited H. contortus egg hatching by more than 85.73% after 24 hours (p<0.01), demonstrating comparable efficacy to albendazole. Based on these findings, A. spicifera extract contains various secondary metabolites with anthelmintic activity, inhibiting both H. contortus adult worm motility and egg hatching. This suggests that A. spicifera has potential for further development as a bioanthelmintic for ruminant parasite control, although further in vivo studies are needed.
Full text article
References
Abu-Khudir, R., Ismail, G. A., & Diab, T. (2020). Antimicrobial, antioxidant, and anti-tumor activities of Sargassum linearifolium and Cystoseira crinita from Egyptian Mediterranean Coast. Nutrition and Cancer, 73(5), 829–844. https://doi.org/10.1080/01635581.2020.1764069
Adduci, I., Sajovitz, F., Hinney, B., Lichtmannsperger, K., Joachim, A., Wittek, T., & Yan, S. (2022). Haemonchosis in sheep and goats, control strategies and development of vaccines against Haemonchus contortus. Animals, 12(18), 2339. https://doi.org/10.3390/ani12182339
Adiwimarta, K., Daryatmo, J., Orskov, E. R., Mayes, R. W., & Hartadi, H. (2010). Utilisation of cassava leaf and Carica papaya leaf as feeds and anthelmintics for goats. Advances in Animal Biosciences, 1(1), 114. https://doi.org/10.1017/S2040470010002578
Akbar, S. A., & Hasan, M. (2024). Evaluation of bioactive composition and phytochemical profile of macroalgae Gracilaria edulis and Acanthophora spicifera from the Banda Aceh Coast, Indonesia. Science & Technology Asia, 29(1), 194–207. https://tci-thaijo.org/index.php/SciTechAsia
Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: a review. Current Research in Food Science, 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011
Ali, R., Rooman, M., Mussarat, S., Norin, S., Ali, S., Adnan, M., & Khan, S. N. (2021). A systematic review on comparative analysis, toxicology, and pharmacology of medicinal plants against Haemonchus contortus. Frontiers in Pharmacology, 12, 644027. https://doi.org/10.3389/fphar.2021.644027
Amoriello, T., Mellara, F., Amoriello, M., Ceccarelli, D., & Ciccoritti, R. (2021). Powdered seaweeds as a valuable ingredient for functional breads. European Food Research and Technology, 247(10), 2431–2443. https://doi.org/10.1007/s00217-021-03804-z
Babják, M., Königová, A., Komáromyová, M., Kuzmina, T., Nosal, P., & Várady, M. (2023). Multidrug resistance in Haemonchus contortus in sheep - can it be overcome? Journal of Veterinary Research, 67(4), 575–581. https://doi.org/10.2478/jvetres-2023-0057
Baek, S. H., Cao, L., Jeong, S. J., Kim, H. R., Nam, T. J., & Lee, S. G. (2021). The comparison of total phenolics, total antioxidant, and anti-tyrosinase activities of Korean Sargassum species. Journal of Food Quality, 2021, 6640789. https://doi.org/10.1155/2021/6640789
Baihaqi, Z. A., Anggrahini, S., Wulandari, Sakti, A. A., Ibrahim, A., & Putri, E. M. (2024). Anthelmintic potential of Swietenia mahagoni seed waste against Haemonchus contortus in Indonesian small ruminant. IOP Conference Series: Earth and Environmental Science, 1417(1), 012045. https://doi.org/10.1088/1755-1315/1417/1/012045
Baihaqi, Z. A., Widiyono, I., Angeles, A. A., Suwignyo, B., & Nurcahyo, W. (2023). Anthelmintic activity of Carica pubescens aqueous seed extract and its effects on rumen fermentation and methane reduction in Indonesian thin-tailed sheep: An in vitro study. Veterinary World, 16(7), 1421–1428. https://doi.org/10.14202/vetworld.2023.1421-1428
Baihaqi, Z. A., Widiyono, I., & Nurcahyo, W. (2020). In vitro anthelmintic activity of aqueous and ethanol extracts of Paraserianthes falcataria bark waste against Haemonchus contortus obtained from a local slaughterhouse in Indonesia. Veterinary World, 13(8), 1549–1554. https://doi.org/10.14202/vetworld.2020.1549-1554
Barbosa, M. L. F., Ribeiro, W. L. C., Filho, J. V. de A., Pereira, R. de C. A., André, W. P. P., Melo, A. C. F. L., Castelo-Branco, D. de S. C. M., de Morais, S. M., de Oliveira, L. M. B., & Bevilaqua, C. M. L. (2023). In vitro anthelmintic activity of Lippia alba essential oil chemotypes against Haemonchus contortus. Experimental Parasitology, 244, 108439. https://doi.org/10.1016/j.exppara.2022.108439
Baycar, A., Konar, N., Goktas, H., Sagdic, O., & Polat, D. G. (2022). The effects of beetroot powder as a colorant on the color stability and product quality of white compound chocolate and chocolate spread. Food Science and Technology, 42. https://doi.org/10.1590/fst.66220
Besier, R. B., Kahn, L. P., Sargison, N. D., & Van Wyk, J. A. (2016). Diagnosis, treatment and management of Haemonchus contortus in small ruminants. Advances in Parasitology, 93, 181–238. https://doi.org/10.1016/bs.apar.2016.02.024
Borges, D. G. L., & Borges, F. de A. (2016). Plants and their medicinal potential for controling gastrointestinal nematodes in ruminants. Nematoda, 3(1), e92016. https://doi.org/10.4322/nematoda.00916
Castillo, A., Celeiro, M., Lores, M., Grgić, K., Banožić, M., Jerković, I., & Jokić, S. (2023). Bioprospecting of targeted phenolic compounds of Dictyota dichotoma, Gongolaria barbata, Ericaria amentacea, Sargassum hornschuchii and Ellisolandia elongata from the Adriatic Sea extracted by two green methods. Marine Drugs, 21(2), 97. https://doi.org/10.3390/md21020097
Chang, C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178–182. https://doi.org/10.38212/2224-6614.2748
Charles, A. L., Sridhar, K., & Alamsjah, M. A. (2020). Effect of drying techniques on color and bioactive potential of two commercial edible Indonesian seaweed cultivars. Journal of Applied Phycology, 32(1), 563–572. https://doi.org/10.1007/s10811-019-01916-4
Chouh, A., Nouadri, T., Catarino, M. D., Silva, A. M. S., & Cardoso, S. M. (2022). Phlorotannins of the brown algae Sargassum vulgare from the Mediterranean Sea Coast. Antioxidants, 11(6), 1055. https://doi.org/10.3390/antiox11061055
Cikoš, A. M., Aladić, K., Velić, D., Tomas, S., Lončarić, P., & Jerković, I. (2022). Evaluation of ultrasound-assisted extraction of fucoxanthin and total pigments from three croatian macroalgal species. Chemical Papers, 77(3), 1545–1559. https://doi.org/10.1007/s11696-022-02524-2
Cohort. (2022). CoStat-Free Statistics Software. (Version 6.0). http://cohortsoftware.com/costat.html
Connan, S. (2015). Spectrophotometric assays of major compounds extracted from algae. In D. B. Stengel & S. Connan (Ed.), Natural products from marine algae: methods and protocols (pp. 75-102). Springer. https://doi.org/10.1007/978-1-4939-2684-8_3
Dewi, Y. L., Sofyan, A., Herdian, H., Sakti, A. A., Irawan, A., Jasmadi, J., Anggraeni, A. S., Mardawati, E., Adriyanto, A., Mahata, M. E., Handayani, U. F., Soares, D. C. D. C., Bouk, G., Sinabang, M. K., & Harmiansyah, H. (2024). Processing technology to improve seaweed nutritional quality as a feed for poultry: a review and its implementation. World’s Poultry Science Journal 80(1), 207–235. https://doi.org/10.1080/00439339.2023.2270952
El Shafay, S., El-Sheekh, M., Bases, E., & El-Shenody, R. (2022). Antioxidant, antidiabetic, anti-inflammatory and anticancer potential of some seaweed extracts. Food Science and Technology , 42, e20521. https://doi.org/10.1590/fst.20521
El-Adl, M. F., Deyab, M. A., El-Shanawany, R. S., & Abu Ahmed, S. E. (2022). Fatty acids of Cladophora glomerata and Chaetomorpha vieillardii (Cladophoraceae) of different niches inhibit the pathogenic microbial growth. Aquatic Botany, 176, 103461. https://doi.org/10.1016/j.aquabot.2021.103461
Engström, M., Karonen, M., Ahern, J., Baert, N., Payré, B., Hoste, H., & Salminen, J. (2016). Chemical structures of plant hydrolyzable tannins reveal their in vitro activity against egg hatching and motility of Haemonchus contortus nematodes. Journal of Agricultural and Food Chemistry, 64(4), 840–851. https://doi.org/10.1021/acs.jafc.5b05691
Freile-Pelegrín, Y., Chávez-Quintal, C., Caamal-Fuentes, & E., Vázquez-Delfín, E., Madera-Santana, T., & Robledo, D. (2020). Valorization of the filamentous seaweed Chaetomorpha gracilis (Cladophoraceae, Chlorophyta) from an IMTA system. Journal of Applied Phycology, 32, 2295–2306. https://doi.org/10.1007/s10811-020-02066-8
Garcia-Vaquero, M., Rajauria, G., & Tiwari, B. (2020). Conventional extraction techniques: Solvent extraction. In Sustainable Seaweed Technologies: Cultivation, Biorefinery, and Applications (pp. 171–189). Elsevier. https://doi.org/10.1016/B978-0-12-817943-7.00006-8
Gibson, V. L., Dedloff, A., Miller, L. J., & Smith, C. M. (2024). Integrated physiological response by four species of Rhodophyta to submarine groundwater discharge reveals complex patterns among closely-related species. Scientific Reports, 14(1), 23547. https://doi.org/10.1038/s41598-024-74555-6
Goering, H. K., & Van Soest, P. J. (1970). Forage fiber analysis (apparatus, reagents, procedures, and some applications). Agriculture Handbook 379 (pp. 387-598). U.S. Department of Agriculture.
Guillén, P. O., Rodríguez-Pesantes, D., Motti, P., Loor, A., Zheng, X., Wigby, J. N., Sonnenholzner, S., Mangelinckx, S., Bossier, P., & Hende, S. Van Den. (2024). Characterized extracts of the tropical red seaweed Acanthophora spicifera protect Ostrea edulis larvae against Vibrio coralliilyticus. Aquaculture, 580, 740282. https://doi.org/10.1016/j.aquaculture.2023.740282
Harahap, M. A., Widodo, S., Handayani, U. F., Altandjung, R. I., Wulandari, Sakti, A. A., Atmoko, B. A., Negara, W., Dewi, Y. L., Julendra, H., Sofyan, A., Wahyono, T., Ujilestari, T., Ahmed, B., Qomariyah, N., Sholikin, M. M., & Baihaqi, Z. A. (2024). Examining performance, milk, and meat in ruminants fed with macroalgae and microalgae: A meta-analysis perspective. Tropical Animal Health and Production, 56(7), 243. https://doi.org/10.1007/s11250-024-04080-1
Hidayah, N., Kustantinah, Noviandi, C. T., Astuti, A., Hanim, C., & Suwignyo, B. (2023). Evaluation of rumen in vitro gas production and fermentation characteristics of four tropical seaweed species. Veterinary Integrative Sciences, 21(1), 229–238. https://doi.org/10.12982/VIS.2023.018
Hodhodi, A., Babakhani, A., & Rostamzad, H. (2022). Effect of different extraction conditions on phlorotannin content and antioxidant activity of extract from brown algae (Sargassum angustifolium). Journal of Food Processing and Preservation, 46, e16307. https://doi.org/10.1111/jfpp.16307
Júnior, L. C. P., Nascimento, F. G., Oliveira, S. R. B. D., Lima, G. C., Chagas, F. D. S., Sombra, V. G., Feitosa, J. P. A., Soriano, E. M., Souza, M. H. L. P., Zocolo, G. J., Silva, L. M. A., de Paula, R. C. M., Damasceno, R. O. S., & Freitas, A. L. P. (2021). Protective effect against gastric mucosa injury of a sulfated agaran from Acanthophora spicifera. Carbohydrate Polymers, 261, 117829. https://doi.org/10.1016/j.carbpol.2021.117829
Kalasariya, H. S., Patel, N. B., Yadav, A., Perveen, K., Yadav, V. K., Munshi, F. M., Yadav, K. K., Alam, S., Jung, Y. K., & Jeon, B. H. (2021). Characterization of fatty acids, polysaccharides, amino acids, and minerals in marine macroalga Chaetomorpha crassa and evaluation of their potentials in skin cosmetics. Molecules, 26(24), 7515. https://doi.org/10.3390/molecules26247515
Khan, F., Jeong, G. J., Khan, M. S. A., Tabassum, N., & Kim, Y. M. (2022). Seaweed-derived phlorotannins: a review of multiple biological roles and action mechanisms. Marine Drugs, 20(6), 384. https://doi.org/10.3390/md20060384
Kumar, D. S. R. S., Puthiran, S. H., Selvaraju, G. D., Matthew, P. A., Senthilkumar, P., Kuppusamy, S., Mani, R. R., Hatamleh, A. A., AI- Dosary, M. A., Chang, S. W., & Ravindran, B. (2023). Preparation and characterization of Magnetite-Polyvinyl Alcohol Hybrid Nanoparticles (As-PVA-MNPs) using Acanthophora spicifera marine algae extract for enhanced antimicrobial activity against pathogenic microorganisms. Molecular Biotechnology 65. https://doi.org/10.1007/s12033-023-00903-y
Kustantinah, Hidayah, N., Noviandi, C. T., Astuti, A., & Paradhipta, D. H. V. (2022). Nutrients content of four tropical seaweed species from Kelapa Beach, Tuban, Indonesia and their potential as ruminant feed. Biodiversitas, 23(12), 6191–6197. https://doi.org/10.13057/biodiv/d231213
Latimer, G. W. Jr. & Horwitz, W. (2010). Official Methods of Analysis of AOAC International (18th ed.). AOAC International.
Lima, C. S., Pereira, M. H., Gainza, Y. A., Hoste, H., Regasini, L. O., & Chagas, A. C. de S. (2021). Anthelmintic effect of Pterogyne nitens (Fabaceae) on eggs and larvae of Haemonchus contortus: Analyses of structure-activity relationships based on phenolic compounds. Industrial Crops and Products, 164, 113348. https://doi.org/10.1016/j.indcrop.2021.113348
Martínez-Ortiz-De-Montellano, C., Torres-Acosta, J. F. D. J., Fourquaux, I., Sandoval-Castro, C. A., & Hoste, H. (2019). Ultrastructural study of adult Haemonchus contortus exposed to polyphenol-rich materials under in vivo conditions in goats. Parasite, 26, 65. https://doi.org/10.1051/parasite/2019065
Medeiros, M. L. S., Alves, R. R. V., Oliveira, B. F., Napoleão, T. H., Paiva, P. M. G., Coelho, L. C. B. B., Bezerra, A. C. D. S., & Silva, M. D. C. (2020). In vitro effects of Moringa oleifera seed lectins on Haemonchus contortus in larval and adult stages. Experimental Parasitology, 218. https://doi.org/10.1016/j.exppara.2020.108004
Mohamed, H. I., Arafa, W. M., Ahmed, O. M., El‑Dakhly, & K. M. (2024). Ovicidal, larvicidal and adulticidal activity of black pepper (Piper nigrum L.) essential oil and tea tree oil (Melaleuca alternifolia) against Haemonchus contortus. Journal of Parasitic Diseases, 48(1), 117–133. https://doi.org/10.1007/s12639-024-01650-w
Montero, L., Herrero, M., Ibáñez, E., & Cifuentes, A. (2014). Separation and characterization of phlorotannins from brown algae Cystoseira abies-marina by comprehensive two-dimensional liquid chromatography. Electrophoresis, 35(11), 1644–1651. https://doi.org/10.1002/elps.201400133
Narvaez-Izquiedo, J., Fonseca-De La Hoz, J., Kannan, G., & Bohorquez-Herrera, J. (2024). Use of macroalgae as a nutritional supplement for sustainable production of ruminants: A systematic review and an insight on the Colombian Caribbean region. Algal Research, 77, 103359. https://doi.org/10.1016/j.algal.2023.103359
Niciura, S. C. M., Benavides, M. V., Okino, C. H., Ibelli, A. M. G., Minho, A. P., Esteves, S. N., & Chagas, A. C. de S. (2022). Genome-wide association study for Haemonchus contortus resistance in Morada Nova sheep. Pathogens, 11(8), 939. https://doi.org/10.3390/pathogens11080939
Olmedo-Juárez, A., Jimenez-Chino, A. L., Bugarin, A., Zamilpa, A., Gives, P. M. de, Villa-Mancera, A., López-Arellano, M. E., Olivares-Pérez, J., Delgado-Núñez, E. J., & González-Cortazar, M. (2022). Phenolic acids and flavonoids from Pithecellobium dulce (Robx.) Benth leaves exhibit ovicidal activity against Haemonchus contortus. Plants, 11(19), 2555. https://doi.org/10.3390/plants11192555
Palevich, N., Maclean, P. H., Candy, P. M., Taylor, W., Mladineo, I., & Cao, M. (2022). Untargeted multimodal metabolomics investigation of the Haemonchus contortus exsheathment secretome. Cells, 11(16), 2525. https://doi.org/10.3390/cells11162525
Panhwer, S. N., Gadahi, J. A., Luo, Q., Huang, C., Liu, W., Jia, L., & Chen, Z. (2023). The anthelmintic potential of Bacillus thuringiensis to counter the anthelmintic resistance against Haemonchus contortus. Experimental Parasitology, 250, 108522. https://doi.org/10.1016/j.exppara.2023.108533
Phang, S. J., Teh, H. X., Looi, M. L., Arumugam, B., Fauzi, M. B., & Kuppusamy, U. R. (2023). Phlorotannins from brown algae: a review on their antioxidant mechanisms and applications in oxidative stress-mediated diseases. Journal of Applied Phycology, 35(2), 867–892. https://doi.org/10.1007/s10811-023-02913-4
Prasedya, E. S., Frediansyah, A., Martyasari, N. W. R., Ilhami, B. K., Abidin, A. S., Padmi, H., Fahrurrozi, Juanssilfero, A. B., Widyastuti, S., & Sunarwidhi, A. L. (2021). Effect of particle size on phytochemical composition and antioxidant properties of Sargassum cristaefolium ethanol extract. Scientific Reports, 11(1), 17876. https://doi.org/10.1038/s41598-021-95769-y
Rameshkumar, S., Ramakritinan, C. M., & Yokeshbabu, M. (2013). Proximate composition of some selected seaweeds from Palk bay and Gulf of Mannar, Tamilnadu, India. Asian Journal of Biomedical and Pharmaceutical Sciences, 16, 1–5. http://www.jbiopharm.com
Ramin, M., Franco, M., Roleda, M. Y., Aasen, I. M., Hetta, M., & Steinshamn, H. (2019). In vitro evaluation of utilisable crude protein and methane production for a diet in which grass silage was replaced by different levels and fractions of extracted seaweed proteins. Animal Feed Science and Technology, 255. https://doi.org/10.1016/j.anifeedsci.2019.114225
Sakti, A. A., Baihaqi, Z. A., Suwignyo, B., Sofyan, A., Herdian, H., & Kustantinah. (2024a). Anthelmintic activity of red macroalgae Acrocystis sp. and Acanthophora sp. etanolic extract against Haemonchus contortus in sheep in vitro. IOP Conference Series: Earth and Environmental Science, 1360(1), 012004. https://doi.org/10.1088/1755-1315/1360/1/012004
Sakti, A. A., Herdian, H., Jasmadi, Permadi, S., Novianty, H., Sefrienda, A. R., Kurnianto, D., Sofyan, A., Kustantinah, Suwignyo, B., & Hanim, C. (2024b). Anthelmintic activity of tropical macroalgae Ulva spp. against Haemonchus contortus in sheep. AIP Conference Proceedings, 2957(1), 070028. https://doi.org/10.1063/5.0184276
Sakti, A. A., Kustantinah, & Nurcahyo, R. W. (2018). In vitro and in vivo anthelmintic activities of aqueous leaf infusion of Azadirachta indica against Haemonchus contortus. Tropical Animal Science Journal, 41(3), 185–190. https://doi.org/10.5398/tasj.2018.41.3.185
Sakti, A. A., Kustantinah, Nurcahyo, R. W., Baliarti, E., & Suwignyo, B. (2020). In vitro anthelmintic activity of kersen leaf (Muntingia calabura) infusion against to Haemonchus contortus worm. IOP Conference Series: Earth and Environmental Science, 462(1), 012005. https://doi.org/10.1088/1755-1315/462/1/012005
Sakti, A. A., Kustantinah, Nurcahyo, R. W., Perdani, L., & Ekaningrum, M. (2019). Extraction of condensed tannins from tropical plants as affected by leaves maturity, maceration time, and centrifugal force. Materials Science Forum, 948 MSF, 78–84. https://doi.org/10.5398/tasj.2024.47.2.188
Sakti, A. A., Kustantinah, Sofyan, A., Nurcahyo, R. W., Fidriyanto, R., Kusnadi, H., Prasetyo, A., Putnarubun, C., Permadi, S., Pramono, Hartati, L., Hudaifa, I., & Suwignyo, B. (2024c). Molecular identification, chemical composition, and in vitro anthelmintic activity of Sargassum duplicatum against Haemonchus contortus. Tropical Animal Science Journal, 47(2), 188–196. https://doi.org/10.5398/TASJ.2024.47.2.188
Sakti, A. A., Suwignyo, B., Sofyan, A., Hanim, C., Herdian, H., Jasmadi, J., Pasaribu, T., Julendra, H., Gunawan, G., Ratnawati, P., Hartati, L., Tarigan, S. A. E., & Adiwimarta, K. (2024d). In vitro anthelmintic activity of Chaetomorpha vieillardii ethanolic extract against adult worm motility and egg-hatching of Haemonchus contortus from sheep. Veterinary Integrative Sciences, 22(2), 475–487. https://doi.org/10.12982/VIS.2024.031
Salamat, N., Derakhshesh, N., Shiry, N., & Alavinia, S. J. (2022). Cytotoxic activities of Padina gymnospora and Acanthophora spicifera extracts against human breast cancer cell lines. Iranian Journal of Fisheries Sciences, 21(6), 1527–1538.
Samrit, T., Osodprasit, S., Chaiwichien, A., Savedvanich, G., Changklungmoa, N., Kueakhai, P., Athipornchai, A., Tamtin, M., Sobhon, P., & Jaikua, W. (2024). The scavenging activity and safety effect of red marine algae Acanthophora spicifera ethanol extract. Trends in Sciences, 21(1), 7287. https://doi.org/10.48048/tis.2024.7287
Sitanggang, F. A., Machfoedz, M. M., & Falah, M. A. F. (2023). Comparison of color quality measurement using chromameter and image processing for dehydrated strawberry products. Proceedings of the 2nd International Conference for Smart Agriculture, Food, and Environment (ICSAFE 2021) (pp. 4–17). https://doi.org/10.2991/978-94-6463-090-9_2
Sivakumar, S., Sadaiyandi, V., Swaminathan, S., & Ramalingam, R. (2024). Biocompatibility, anti-hemolytic, and antibacterial assessments of electrospun PCL/collagen composite nanofibers loaded with Acanthophora spicifera extracts mediated copper oxide nanoparticles. Biocatalysis and Agricultural Biotechnology, 55. https://doi.org/10.1016/j.bcab.2023.102983
Sofyan, A., Irawan, A., Herdian, H., Jasmadi, Harahap, M. A., Sakti, A. A., Suryani, A. E., Novianty, H., Kurniawan, T., Darma, I. N. G., Windarsih, A., & Jayanegara, A. (2022). Effects of various macroalgae species on methane production, rumen fermentation, and ruminant production: A meta-analysis from in vitro and in vivo experiments. Animal Feed Science and Technology, 294, 115503. https://doi.org/10.1016/j.anifeedsci.2022.115503
Suryani, A. E., Anggraeni, A. S., Istiqomah, L., Damayanti, E., & Karimy, M. F. (2021). Isolation and identification of phytate-degrading yeast from traditional fermented food. Biodiversitas, 22(2), 866–873. https://doi.org/10.13057/biodiv/d220241
Suwignyo, B., Aristia Rini, E., & Helmiyati, S. (2023). The profile of tropical alfalfa in Indonesia: A review. In Saudi Journal of Biological Sciences, 30(1), 103504. https://doi.org/10.1016/j.sjbs.2022.103504
Suwignyo, B., Mustika, A., Kustantinah, Yusiati, L. M., & Suhartanto, B. (2020). Effect of drying method on physical-chemical characteristics and amino acid content of tropical alfalfa (Medicago sativa L.) hay for poultry feed. American Journal of Animal and Veterinary Sciences, 15(2), 118–122. https://doi.org/10.3844/ajavsp.2020.118.122
Tarahovsky, Y. S., Kim, Y. A., Yagolnik, E. A., & Muzafarov, E. N. (2014). Flavonoid-membrane interactions: Involvement of flavonoid-metal complexes in raft signaling. Biochimica et Biophysica Acta, 1838(5), 1235–1246. https://doi.org/10.1016/j.bbamem.2014.01.021
Urrea-Victoria, V., Furlan, C. M., dos Santos, D. Y. A. C., & Chow, F. (2022). Antioxidant potential of two Brazilian seaweeds in response to temperature: Pyropia spiralis (red alga) and Sargassum stenophyllum (brown alga). Journal of Experimental Marine Biology and Ecology, 549, 151706. https://doi.org/10.1016/j.jembe.2022.151706
Velázquez-Antunez, J., Olivares-Perez, J., Olmedo-Juárez, A., Rojas-Hernandez, S., Villa-Mancera, A., Romero-Rosales, T., Zamilpa, A., & Gonzalez-Cortazar, M. (2023). Biological activity of the secondary compounds of Guazuma ulmifolia leaves to inhibit the hatching of eggs of Haemonchus contortus. Pakistan Veterinary Journal, 43(1), 55–60.
Vinuganesh, A., Kumar, A., Korany, S. M., Alsherif, E. A., Selim, S., Prakash, S., Beemster, G. T. S., & AbdElgawad, H. (2022). Seasonal changes in the biochemical constituents of green seaweed Chaetomorpha antennina from Covelong, India. Biomolecules, 12(10), 1475. https://doi.org/10.3390/biom12101475
Vissers, A. M., Caligiani, A., Sforza, S., Vincken, J. P., & Gruppen, H. (2017). Phlorotannin composition of Laminaria digitata. Phytochemical Analysis, 28(6), 487–495. https://doi.org/10.1002/pca.2697
Vonthron-Sénécheau, C. (2016). Medicinal properties: antibiotic, tonic, and antiparasitic properties. In Seaweed in Health and Disease Prevention (pp. 369–388). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802772-1.00011-7
Winarni, D., Husna, F. N., Syadzha, M. F., Susilo, R. J. K., Hayaza, S., Ansori, A. N. M., Alamsjah, M. A., Amin, M. N. G., Wulandari, P. A. C., Pudjiastuti, P., & Awang, K. (2022). Topical administration effect of Sargassum duplicatum and Garcinia mangostana extracts combination on open wound healing process in diabetic mice. Scientifica, 2022(3), 9700794. https://doi.org/10.1155/2022/9700794
Authors
Copyright (c) 2025 Tropical Animal Science Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.