Identification of Campylobacter jejuni from Chicken Carcasses and Characterization of Their Antibiotic Resistance Using Molecular Approach
Abstract
Campylobacter species, particularly Campylobacter jejuni and Campylobacter coli, are foodborne pathogenic bacteria that cause campylobacteriosis, an acute gastroenteritis in humans. The most important transmission source to humans is contaminated animal products, such as chicken carcasses. Recently, there has been a growing concern about emerging antibiotic-resistant pathogens, including Campylobacter. Improper use of antibiotics in livestock can increase the risk of antibiotic resistance and the transmission of resistant bacterial strains to humans. This study aims to identify the species of Campylobacter spp. isolated from chicken carcasses and detected their antibiotic resistance genes using MinION sequencing in C. jejuni isolates. The disc diffusion method was also used to evaluate their resistance to macrolide, tetracycline, and fluoroquinolone antibiotics. The study results show that C. jejuni was identified in 64% of the 25 isolates, while C. coli was identified in 36% of the isolates. Molecular testing on C. jejuni isolates revealed that macrolide resistance genes were absent, specifically the 23S rRNA and the ermB genes. The tetO gene encoding for tetracycline resistance was detected in 62.5% of the isolates, and all 16 isolates (100%) were found to have the gyrA gene. In C. jejuni isolates, the cmeABC gene, which functions as a multidrug efflux pump, was also detected. The antibiotic resistance of C. jejuni isolates based on the disc diffusion method indicated high resistance to fluoroquinolone antibiotics, followed by tetracycline antibiotics.
Full text article
References
Andritsos, N. D., Tzimotoudis, N., & Mataragas, M. (2023). Prevalence and distribution of thermotolerant Campylobacter species in poultry: A comprehensive review with a focus on the factors affecting the detection and enumeration of Campylobacter jejuni and Campylobacter coli in chicken meat. Applied Sciences, 13(14), 8079. https://doi.org/10.3390/app13148079
Awad, A., Yeh, H. Y., Ramadan, H., & Rothrock, M. J. (2023). Genotypic characterization, antimicrobial susceptibility and virulence determinants of Campylobacter jejuni and Campylobacter coli isolated from pastured poultry farms. Frontiers in microbiology, 14, 1271551. https://doi.org/10.3389/fmicb.2023.1271551
Bravo, V., Katz, A., Porte, L., Weitzel, T., Varela, C., Gonzalez-Escalona, N., & Blondel, C. J. (2021). Genomic analysis of the diversity, antimicrobial resistance and virulence potential of clinical Campylobacter jejuni and Campylobacter coli strains from Chile. PLoS Neglected Tropical Diseases, 15(2), e0009207. https://doi.org/10.1371/journal.pntd.0009207
Center for Indonesian Veterinary Analytical Studies. (2017). An ecohealth approach to develop a strategy for the prudent use of antimicrobials to control antimicrobial resistance in human, animal, and environmental health in Indonesia: Technical Report. A Collaborative Work Indonesia, China, Lao PDR, Thailand and Vietnam. Center for Indonesian Veterinary Analytical Studies.
Clinical and Laboratory Standards Institute. (2015). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. (3rd ed). CLSI Supplement M45. Clinical and Laboratory Standards Institute.
European Food Safety Authority & European Centre for Disease Prevention and Control. (2023). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021/2022. EFSA Journal, 22(2). https://doi.org/10.2903/j.efsa.2024.8583
Frazao, M. R., Cao, G., Medeiros, M. I. C., Duque, S. D. S., Allard, M. W., & Falcao, J. P. (2021). Antimicrobial resistance profiles and phylogenetic analysis of Campylobacter jejuni strains isolated in Brazil by whole genome sequencing. Microbial Drug Resistance, 27(5), 660-669. https://doi.org/10.1089/mdr.2020.0184
García-Sánchez, L., Melero, B., & Rovira, J. (2018). Campylobacter in the food chain. Advances in food and nutrition research, 86, 215-252. Epub. PMID: 30077223. https://doi.org/10.1016/bs.afnr.2018.04.005
Je, H. J., Singh, S., Kim, D. W., Hur, H. S., Kim, A. L., Seo, E. J., & Koo, O. K. (2023). Systematic review and meta-analysis of Campylobacter species contamination in poultry, meat, and processing environments in South Korea. Microorganisms, 11(11), 2722. https://doi.org/10.3390/microorganisms11112722
Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome research, 26(12), 1721-1729. https://doi.org/10.1101/gr.210641.116
Kim, J., Park, H., Kim, J., Kim, J. H., Jung, J. I., Cho, S., & Jeon, B. (2019). Comparative analysis of aerotolerance, antibiotic resistance, and virulence gene prevalence in Campylobacter jejuni isolates from retail raw chicken and duck meat in South Korea. Microorganisms,7(10), 433. http://doi.org/10.3390/microorganisms7100433
Magnusson, U., Moodley, A., & Osbjer, K. (2021). Antimicrobial resistance at the livestock-human interface: implications for Veterinary Services. Revue scientifique et technique (International Office of Epizootics), 40(2), 511-521. https://doi.org/10.20506/rst.40.2.3241
Maguire, M., Kase, J. A., Roberson, D., Muruvanda, T., Brown, E. W., Allard, M., & González-Escalona, N. (2021). Precision long-read metagenomics sequencing for food safety by detection and assembly of Shiga toxin-producing Escherichia coli in irrigation water. PloS one, 16(1), e0245172. https://doi.org/10.1371/journal.pone.0245172
Montero, L., Medina-Santana, J. L., Ishida, M., Sauders, B., Trueba, G., & Vinueza-Burgos, C. (2024). Transmission of dominant strains of Campylobacter jejuni and Campylobacter coli between farms and retail stores in Ecuador: Genetic diversity and antimicrobial resistance. Plos one, 19(9), e0308030. https://doi.org/10.1371/journal.pone.0308030
Oxford Nanopore Technologies. (2023). EPI2ME Labs workflows: Antimicrobial resistance detection user guide. https://epi2me.nanoporetech.com
Quino, W., Caro-Castro, J., Hurtado, V., Flores-León, D., Gonzalez-Escalona, N., & Gavilan, R. G. (2022). Genomic analysis and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli in Peru. Frontiers in microbiology, 12, 802404. https://doi.org/10.3389/fmicb.2021.802404
Schreyer, M. E., Olivero, C. R., Rossler, E., Soto, L. P., Frizzo, L. S., Zimmermann, J. A., & Virginia, Z. M. (2022). Prevalence and antimicrobial resistance of Campylobacter jejuni and C. coli identified in a slaughterhouse in Argentina. Current Research in Food Science, 5, 590-597. https://doi.org/10.1016/j.crfs. 2022.03.005
Skarp, C. P. A., Hänninen, M. L., & Rautelin, H. I. K. (2016). Campylobacteriosis: the role of poultry meat. Clinical Microbiology and Infection, 22(2), 103-109. https://doi.org/10.1016/j.cmi.2015.11.019
Shen, Z., Wang, Y., Zhang, Q., & Shen, J. (2018). Antimicrobial resistance in Campylobacter spp. Microbiology spectrum, 6(2), 10-1128. https://doi.org/10.1128/microbiolspec.ARBA-0013-2017
Stella, S., Tirloni, E., Bernardi, C., & Grilli, G. (2021). Evaluation of effect of chilling steps during slaughtering on the Campylobacter sp. counts on broiler carcasses. Poultry Science, 100(3), 100866. https://doi.org/10.1016/j.psj.2020.11.043
Tyler, A. D., McAllister, J., Stapleton, H., Gauci, P., Antonation, K., Thirkettle-Watts, D., & Corbett, C. R. (2023). Field-based detection of bacteria using nanopore sequencing: Method evaluation for biothreat detection in complex samples. PLoS ONE, 18(11), e0295028. https://doi.org/10.1371/journal.pone.0295028
Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic resistance in bacteria—A review. Antibiotics, 11(8), 1079. https://doi.org/10.3390/antibiotics11081079
Wang, Y., Zhao, Y., Bollas, A., Wang, Y., & Au, K. F. (2021). Nanopore sequencing technology, bioinformatics and applications. Nature Biotechnology, 39(11), 1348-1365. https://doi.org/10.1038/s41587-021-01108-x
Wanja, D. W., Mbuthia, P. G., Bebora, L. C., Aboge, G. O., & Ogoti, B. (2023). Antimicrobial usage, susceptibility profiles, and resistance genes in Campylobacter isolated from cattle, chicken, and water samples in Kajiado County, Kenya. International Journal of Microbiology, 2023(1), 8394605. https://doi.org/10.1155/2023/8394605
Watkins, L. K. F., Laughlin, M. E., Joseph, L. A., Chen, J. C., Nichols, M., Basler, C., & Friedman, C. R. (2021). Ongoing outbreak of extensively drug-resistant Campylobacter jejuni infections associated with US pet store puppies, 2016-2020. JAMA network open, 4(9), e2125203-e2125203. https://doi.org/10.1001/jamanetworkopen.2021.25203
Whitehouse, C. A., Zhao, S., & Tate, H. (2018). Antimicrobial resistance in Campylobacter species: mechanisms and genomic epidemiology. In Advances in applied microbiology (Vol. 103, pp. 1-47). Academic Press. https://doi.org/10.1016/bs.aambs.2018.01.001
Widiyanti, P. M., Sudarwanto, M. B., & Sudarnika, E. (2019). The use of enrofloxacin antibiotic as a veterinary drug and its residual hazards on public health. WARTAZOA. Indonesian Bulletin of Animal and Veterinary Sciences, 29(2), 75-84. http://dx.doi.org/10.14334/wartazoa.v29i2.2015
Woźniak-Biel, A., Bugla-Płoskońska, G., Kielsznia, A., Korzekwa, K., Tobiasz, A., Korzeniowska-Kowal, A., & Wieliczko, A. (2018). High prevalence of resistance to fluoroquinolones and tetracycline Campylobacter spp. isolated from poultry in Poland. Microbial Drug Resistance, 24(3), 314-322. https://doi.org/10.1089/mdr.2016.0249
Yanestria, S. M., Effendi, M. H., Tyasningsih, W., Khairullah, A. R., Kurniawan, S. C., Moses, I. B., & Hasib, A. (2024). Fluoroquinolone resistance and phylogenetic analysis of broiler Campylobacter jejuni isolates in Indonesia. Journal of Advanced Veterinary Research, 14(1), 204-208. https://doi.org/10.5455/OVJ.2024.v14.i3.2
Yang, H., Li, Y., Zhang, Y., Dong, B., Duan, B., Guo, L., & Bai, R. (2023). Prevalence, drug resistance spectrum and virulence gene analysis of Campylobacter jejuni in broiler farms in central Shanxi, China. Poultry Science, 102(3), 102419. https://doi.org/10.1016/j.psj.2022.102419
Yoon, J. G., Lee, S. N., Hyun, H. J., Choi, M. J., Jeon, J. H., Jung, E., & Kim, W. J. (2017). Campylobacter jejuni bacteremia in a liver cirrhosis patient and review of literature: A case study. Infection & Chemotherapy, 49(3), 230. https://doi.org/10.3947/ic.2017.49.3.230
Authors
Copyright (c) 2025 Tropical Animal Science Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.