Enhancing the Accuracy of NIRS Prediction with Adaptive Machine Learning for Assessing Fermented Citronella Feed Quality

S. Samadi(1) , E. Kaloudis(2) , I. Wahyudi(3) , S. Wajizah(4) , A. A. Munawar(5)
(1) Department of Animal Science, Faculty of Agriculture, Universitas Syiah Kuala,
(2) Computer Simulation, Genomics and Data Analysis Laboratory, Department of Food Science and Nutrition, School of the Environment, University of the Aegean,
(3) Department of Animal Science, Faculty of Agriculture, Universitas Syiah Kuala,
(4) Department of Animal Science, Faculty of Agriculture, Universitas Syiah Kuala,
(5) Research Center for Innovation and Feed Technology, Universitas Syiah Kuala

Abstract

The valorization of agricultural residues as alternative feed resources is increasingly critical for enhancing livestock sustainability. This study investigates the potential of sequential fermentation to improve the nutritional quality of citronella (Cymbopogon nardus L.) residues and evaluates the use of near-infrared spectroscopy (NIRS) combined with machine learning (ML) models for rapid feed quality assessment. Citronella residues were subjected to sequential fungal and lactic acid bacterial fermentation, and their feed quality attributes, including moisture, crude protein, crude fiber, ether extract, and ash content, were measured using standard laboratory methods. NIR spectra were acquired from 1000 to 2500 nm and analyzed using partial least squares regression (PLSR), ridge regression, adaptive boosting (AdaBoost), and support vector machine regression (SVMR). Principal component analysis (PCA) revealed a high degree of spectral homogeneity with sufficient underlying variability to enable robust modeling. Among the models evaluated, AdaBoost and SVMR consistently outperformed linear models, achieving high coefficients of determination (R² ≥ 0.99) and low root mean square errors (RMSE). Particularly, SVMR and AdaBoost achieved high predictive accuracy for moisture, crude protein, and ether extract content, with residual predictive deviation (RPD) values far exceeding standard thresholds. The integration of sequential fermentation, NIRS, and advanced ML algorithms presents a rapid, non-destructive, and sustainable approach to upgrading and monitoring alternative fibrous feed sources, supporting broader initiatives in circular bioeconomy and sustainable animal production.

Full text article

Generated from XML file

References

Association of Official Analytical Chemists. (2006). Official methods of analysis of AOAC International (18th ed.). AOAC International.

Balehegn, M., Varijakshapanicker, P., Zampaligre, N., Blummel, M., Ayantunde, A., Jones, C., Prasad, K. V. S. V., Duncan, A., Dejene, M., & Adesogan, A. T. (2022). Near-infrared reflectance spectroscopy for forage nutritive value analysis in sub-Saharan African countries. Agronomy Journal, 114(1), 100–114. https://doi.org/10.1002/AGJ2.20801

Buonaiuto, G., Cavallini, D., Mammi, L. M. E., Ghiaccio, F., Palmonari, A., Formigoni, A., & Visentin, G. (2021). The accuracy of NIRS in predicting chemical composition and fibre digestibility of hay-based total mixed rations. Italian Journal of Animal Science, 20(1), 1730–1739. https://doi.org/10.1080/1828051x.2021.1990804

Cen, H., & He, Y. (2007). Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science & Technology, 18(2), 72–83. https://doi.org/10.1016/J.TIFS.2006.09.003

Cozzolino, D. (2021). The ability of near infrared (NIR) spectroscopy to predict functional properties in foods: challenges and opportunities. Molecules, 26(22), 6981. https://doi.org/10.3390/MOLECULES26226981

Gasparini, M., Brambilla, G., Menotta, S., Albrici, G., Avezzù, V., Vitali, R., Buonaiuto, G., Lamanna, M., & Cavallini, D. (2024). Sustainable dairy farming and fipronil risk in circular feeds: insights from an Italian case study. Food Additives & Contaminants: Part A, 41(12), 1582–1593. https://doi.org/10.1080/19440049.2024.2414954

Giaretta, E., Mordenti, A., Palmonari, A., Brogna, N., Canestrari, G., Belloni, P., Cavallini, D., Mammi, L., Cabbri, R., & Formigoni, A. (2019). NIRs calibration models for chemical composition and fatty acid families of raw and freeze-dried beef: A comparison. Journal of Food Composition and Analysis, 83, 103257. https://doi.org/10.1016/j.jfca.2019.103257

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd edition). Springer New York. https://doi.org/10.1007/978-0-387-84858-7

Hossain, M. E., Kabir, M. A., Zheng, L., Swain, D. L., McGrath, S., & Medway, J. (2024). Near-infrared spectroscopy for analysing livestock diet quality: A systematic review. Heliyon, 10(22), e40016. https://doi.org/10.1016/J.HELIYON.2024.E40016

Jalal, H., Sucu, E., Cavallini, D., Giammarco, M., Akram, M. Z., Karkar, B., Gao, M., Pompei, L., Eduardo, J., Prasinou, P., & Fusaro, I. (2025). Rumen fermentation profile and methane mitigation potential of mango and avocado byproducts as feed ingredients and supplements. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-00675-2

Lamanna, M., Muca, E., Buonaiuto, G., Formigoni, A., & Cavallini, D. (2025). From posts to practice: Instagram’s role in veterinary dairy cow nutrition education—How does the audience interact and apply knowledge? A survey study. Journal of Dairy Science, 108(2), 1659–1671. https://doi.org/10.3168/jds.2024-25347

Manurung, R., Melinda, R., Abduh, M. Y., Widiana, A., Sugorc, I., & Suheryadi, D. (2015). Potential use of lemongrass (Cymbopogon winterianus) residue as dairy cow feed. Pakistan Journal of Nutrition, 14(12), 919–923. https://doi.org/10.3923/PJN.2015.919.923

Mendoza, P. T. D., Hurburgh, C. R., Maier, D. E., & Armstrong, P. R. (2023). NIR spectral imaging for animal feed quality and safety. Applied Engineering in Agriculture, 39(6), 553–564. https://doi.org/https://doi.org/10.13031/aea.15051

Modroño, S., Soldado, A., Martínez-Fernández, A., & de la Roza-Delgado, B. (2017). Handheld NIRS sensors for routine compound feed quality control: Real time analysis and field monitoring. Talanta, 162, 597–603. https://doi.org/10.1016/J.TALANTA.2016.10.075

Munawar, A. A., Zulfahrizal, & Mörlein, D. (2024). Prediction accuracy of near infrared spectroscopy coupled with adaptive machine learning methods for simultaneous determination of chlorogenic acid and caffeine on intact coffee beans. Case Studies in Chemical and Environmental Engineering, 10, 100913. https://doi.org/10.1016/j.cscee.2024.100913

Niu, D., Zuo, S., Jiang, D., Tian, P., Zheng, M., & Xu, C. (2018). Treatment using white rot fungi changed the chemical composition of wheat straw and enhanced digestion by rumen microbiota in vitro. Animal Feed Science and Technology, 237, 46–54. https://doi.org/10.1016/J.ANIFEEDSCI.2018.01.005

Pasquini, C. (2018). Near infrared spectroscopy: A mature analytical technique with new perspectives – A review. Analytica Chimica Acta, 1026, 8–36. https://doi.org/10.1016/J.ACA.2018.04.004

Pucetti, P., Filho, S. de C. V., Roque, J. V., da Silva, J. T., de Oliveira, K. R., Sales Silva, F. A., Cardoso, W. J., e Silva, F. F., & Swanson, K. C. (2024). Predicting ruminal degradability and chemical composition of corn silage using near-infrared spectroscopy and multivariate regression. PLoS ONE, 19(4 April). https://doi.org/10.1371/JOURNAL.PONE.0296447

Rashid, H. U., Khan, T., Turi, A. A., Abbas, M., Ullah, K., Fusaro, I., Buonaiuto, G., & Cavallini, D. (2025). Impact of urea-molasses treated wheat straw levels in total mixed rations on growth and nutrient digestibility in Azikheli buffalo calves. Tropical Animal Health and Production, 57(2). https://doi.org/10.1007/s11250-025-04363-1

Rego, G., Ferrero, F., Valledor, M., Campo, J. C., Forcada, S., Royo, L. J., & Soldado, A. (2020). A portable IoT NIR spectroscopic system to analyze the quality of dairy farm forage. Computers and Electronics in Agriculture, 175, 105578. https://doi.org/10.1016/J.COMPAG.2020.105578

Samadi, Pratama, E. S., Wajizah, S., Ilham, Wahyudi, I., & Munawar, A. A. (2025). The use of near-infrared spectroscopy to rapidly determine in vitro digestibility profiles in fermented agro-waste ruminant diets. IOP Conference Series: Earth and Environmental Science, 1477(1), 012001. https://doi.org/10.1088/1755-1315/1477/1/012001

Samadi, Wahyudi, I., Wajizah, S., Zulfahrizal, & Munawar, A. A. (2023). Rapid and Non-Destructive Prediction of Animal Feed Nutritive Parameters Using Near Infrared Spectroscopy and Multivariate Analysis. International Journal of Design and Nature and Ecodynamics, 18(4), 951–956. https://doi.org/10.18280/IJDNE.180422

Samadi, Wajizah, S., & Munawar, A. A. (2020). Near infrared spectroscopy (NIRS) data analysis for a rapid and simultaneous prediction of feed nutritive parameters. Data in Brief, 29, 105211. https://doi.org/10.1016/J.DIB.2020.105211

Sari, A., Manguwardoyo, W., & Sugoro, I. (2017). Degradasi ampas dan serai wangi segar (Cymbopogon nardus L) dengan metode in sacco pada kerbau fistula. Prosiding Seminar Nasional Teknologi Peternakan dan Veteriner. 118–124. https://doi.org/10.14334/PROS.SEMNAS.TPV-2017-P.119-125

Singh, M., Pandey, N., Dwivedi, P., Kumar, V., & Mishra, B. B. (2019). Production of xylose, levulinic acid, and lignin from spent aromatic biomass with a recyclable Brønsted acid synthesized from d-limonene as renewable feedstock from citrus waste. Bioresource Technology, 293, 122105. https://doi.org/10.1016/J.BIORTECH.2019.122105

Sun, X., Dou, Z., Shurson, G. C., & Hu, B. (2024). Bioprocessing to upcycle agro-industrial and food wastes into high-nutritional value animal feed for sustainable food and agriculture systems. Resources, Conservation and Recycling, 201, 107325. https://doi.org/10.1016/J.RESCONREC.2023.107325

Susanti, D., Jamarun, N., Agustin, F., Astuti, T., & Yanti, G. (2020). Kecernaan in-vitro fraksi serat kombinasi pucuk tebu dan titonia fermentasi sebagai pakan ruminansia. Jurnal Agripet, 20(1), 86–95. https://doi.org/10.17969/AGRIPET.V20I1.16040

Tsegay, G., Ammare, Y., & Mesfin, S. (2023). Development of non-destructive NIRS models to predict oil and major fatty acid contents of Ethiopian sesame. Journal of Food Composition and Analysis, 115, 104908. https://doi.org/10.1016/J.JFCA.2022.104908

Tuyen, D. V., Phuong, H. N., Cone, J. W., Baars, J. J. P., Sonnenberg, A. S. M., & Hendriks, W. H. (2013). Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Bioresource Technology, 129, 256–263. https://doi.org/10.1016/J.BIORTECH.2012.10.128

Wahyudi, I., Wajizah, S., Munawar, A. A., & Samadi. (2025). NIRS-based rapid analysis of crude fiber and crude protein in fermented citronella residues as non-conventional feedstuffs. IOP Conference Series: Earth and Environmental Science, 1476(1), 012020. https://doi.org/10.1088/1755-1315/1476/1/012020

Walelegne, M., Meheret, F., Derseh, M. B., Dejene, M., Asmare, Y. T., Prasad, K. V. S. V, Jones, C. S., Dixon, R. M., & Duncan, A. J. (2023). Near-infrared reflectance spectroscopy using a portable instrument to measure the nutritive value of oilseed meals as livestock feed. Frontiers in Animal Science, 4-2023. https://doi.org/10.3389/fanim.2023.1203449

Widiaswanti, E., Yunitarini, R., & Pratikto, P. (2024). System dynamics modeling for evaluating the profits of the upstream supply chain of citronella oil. International Journal on Food System Dynamics, 15(2), 204–214. https://doi.org/10.18461/IJFSD.V15I2.J7

Williams, P., & Norris, K. (1987). Near-infrared technology in the agricultural and food industries. American Association of Cereal Chemists, Inc..

Zhang, X., Yang, J., Lin, T., & Ying, Y. (2021). Food and agro-product quality evaluation based on spectroscopy and deep learning: A review. Trends in Food Science & Technology, 112, 431–441. https://doi.org/10.1016/J.TIFS.2021.04.008

Authors

S. Samadi
samadi177@usk.ac.id (Primary Contact)
E. Kaloudis
I. Wahyudi
S. Wajizah
A. A. Munawar
Samadi, S., Kaloudis, E., Wahyudi, I., Wajizah, S., & Munawar, A. A. (2025). Enhancing the Accuracy of NIRS Prediction with Adaptive Machine Learning for Assessing Fermented Citronella Feed Quality. Tropical Animal Science Journal, 48(5), 440-449. https://doi.org/10.5398/tasj.2025.48.5.440

Article Details

How to Cite

Samadi, S., Kaloudis, E., Wahyudi, I., Wajizah, S., & Munawar, A. A. (2025). Enhancing the Accuracy of NIRS Prediction with Adaptive Machine Learning for Assessing Fermented Citronella Feed Quality. Tropical Animal Science Journal, 48(5), 440-449. https://doi.org/10.5398/tasj.2025.48.5.440