Proteomic Analysis of Pesisir Bull Sperm in Different Age Groups for the Identification of Reproductive Function Proteins
Abstract
Pesisir cattle are native to Indonesia and originate from West Sumatra. It is known for its high environmental adaptability and can be further developed using a proteomic approach. The proteomic approach for testing the fertility of Pesisir bulls is an important factor in determining a potentially superior breed. Proteomic studies of reproduction in Pesisir bulls have not been widely conducted. This study aimed to identify and characterize functional sperm proteins in Pesisir bulls that are associated with reproductive processes. Semen samples were collected from 12 pesisir bulls aged 2–4 years and grouped into three age categories. Protein profile analysis was performed using polyacrylamide gel electrophoresis with 1D-SDS-PAGE, followed by proteolytic digestion of the proteins in the gel and protein identification using LC-MS/MS analysis. Protein functions were predicted based on analysis of biological annotations generated using UniProt, Venny, PANTHER, and STRING. Based on the evaluation of fresh semen, sperm motility in Pesisir bulls was found to increase with age. Proteomic analysis successfully identified 334 proteins in the sperm of Pesisir bulls. Among these, two proteins, ZPBP and SPACA3, were identified as involved in reproductive and fertilisation processes. Functionally, both proteins play crucial roles in acrosomal events during fertilisation. Gene Ontology analysis showed that most proteins in sperm are involved in various biological processes, including cellular activities, metabolic processes, and molecular functions related to catalytic activities. In conclusion, SPACA3 and ZPBP proteins were identified as potentially involved in reproductive processes and may serve as fertility markers in Pesisir bulls.
Full text article
References
Agarwal, A., Selvam, M. K. P., & Baskaran, S. (2020). Proteomic analyses of human sperm cells: Understanding the role of proteins and molecular pathways affecting male reproductive health. International Journal of Molecular Sciences, 21(5), 1621. https://doi.org/10.3390/ijms21051621
Agil, M., Pardede, B. P., Purwantara, B., Arifiantini, R. I., Hasbi, H., Sonjaya, H., Said, S., Suyadi, S., Septian, W. A., Nugraha, C. D., Putri, R. F., Ardianto, A., Iskandar, H., Pamungkas, F. A., & Memili, E. (2025). Sperm acrosome-associated 1 (SPACA1) mRNA and protein molecules deficiency indicate low fertility and semen quality of Bali bulls (Bos sondaicus). Theriogenology, 233, 80–87. https://doi.org/10.1016/j.theriogenology.2024.11.009
Baharun, A., Rahmi, A., Handarini, R., Maulana, T., Said, S., Iskandar, H., Darussalam, I., Nalley, W. M. M., & Arifiantini, R. I. (2023). Semen quality and frozen semen production in Pasundan bulls: A molecular weight perspective on seminal plasma and spermatozoa protein. Journal of Advanced Veterinary and Animal Research, 10(4), 730–737. https://doi.org/10.5455/javar.2023.j728
Corda, P. O., Moreira, J., Howl, J., Oliveira, P. F., Fardilha, M., & Silva, J. V. (2024). Differential proteomic analysis of human sperm: A systematic review to identify candidate targets to monitor sperm quality. World Journal of Men’s Health, 42(1), 71–91. https://doi.org/10.5534/wjmh.220262
Diansyah, A. M., Santoso, S., Herdis, H., Yusuf, M., Priyatno, T. P., Maulana, T., Toleng, A. L., Dagong, M. I. A., Said, S., Iskandar, H., Nurlatifah, A., Lestari, P., Affandy, L., & Baharun, A. (2025). Identification of reproductive performance in Bali-polled bulls using computer-assisted semen analysis and plasma seminal proteomics. Veterinary World, 18(1), 102–109. https://doi.org/10.14202/vetworld.2025.102-109
Diansyah, A. M., Yusuf, M., Toleng, A. L., Dagong, M. I. A., Maulana, T., Hasrin, & Baharun, A. (2023). The sperms post-thawing quality and proteomic seminal plasma on fertility performance of Bali-polled bull. Advances in Animal and Veterinary Sciences, 11(4), 517–525. https://doi.org/10.17582/journal.aavs/2023/11.4.517.525
Falco, M. H., Espinosa, P. S., Torres, M. J. G., Botella, A. L., & Aizpurua, J. (2022). The role of sperm proteins IZUMO1 and TMEM95 in mammalian fertilization: A systematic review. International Journal of Molecular Sciences, 23(7), 3929. https://doi.org/10.3390/ijms23073929
Gacem, S., Castello-Ruiz, M., Hidalgo, C. O., Tamargo, C., Santolaria, P., Soler, C., Yániz, J. L., & Silvestre, M. A. (2023). Bull sperm SWATH-MS-based proteomics reveals link between high fertility and energy production, motility structures, and sperm-oocyte interaction. Journal of Proteome Research, 22(11), 3607–3624. https://doi.org/10.1021/acs.jproteome.3c00461
Gunawan, A., Anggrela, D., Listyarini, K., Abuzahra, M. A., Jakaria, Yamin, M., Inounu, I., & Sumantri, C. (2018). Identification of single nucleotide polymorphism and pathway analysis of apolipoprotein A5 (APOA5) related to fatty acid traits in Indonesian sheep. Tropical Animal Science Journal, 41(3), 165–173. https://doi.org/10.5398/tasj.2018.41.3.165
Gunawan, A., Sari, R., Parwoto, Y., & Uddin, M. J. (2011). Non genetic factors effect on reproductive performance and preweaning mortality from artificially and naturally bred in Bali cattle. Journal of the Indonesian Tropical Animal Agriculture, 36(2), 83–90. https://doi.org/10.14710/jitaa.36.2.83-90
Harayama, H., Minami, K., Kishida, K., & Noda, T. (2017). Protein biomarkers for male artificial insemination subfertility in bovine spermatozoa. Reproductive Medicine and Biology, 16(2), 89–98. https://doi.org/10.1002/rmb2.12021
Jin, M., Fujiwara, E., Kakiuchi, Y., Okabe, M., Satouh, Y., Baba, S. A., Chiba, K., & Hirohashi, N. (2011). Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proceedings of the National Academy of Sciences, 108(12), 4892–4896. https://doi.org/10.1073/pnas.1018202108
Kaltsas, A., Zikopoulos, A., Markou, E., Zachariou, A., Stavropoulos, M., Kratiras, Z., Symeonidis, E. N., Dimitriadis, F., Sofikitis, N., & Chrisofos, M. (2024). Proteomics and metabolomics in varicocele-associated male infertility: Advancing precision diagnostics and therapy. Journal of Clinical Medicine, 13(23), 7390. https://doi.org/10.3390/jcm13237390
Kato, Y., Kumar, S., Lessard, C., & Bailey, J. L. (2021). ACRBP (Sp32) is involved in priming sperm for the acrosome reaction and the binding of sperm to the zona pellucida in a porcine model. PLoS ONE, 16(6), e0251973. https://doi.org/10.1371/journal.pone.0251973
Klein, E. K., Swegen, A., Gunn, A. J., Stephen, C. P., Aitken, R. J., & Gibb, Z. (2022). The future of assessing bull fertility: Can the ’omics fields identify usable biomarkers. Biology of Reproduction, 106(5), 854–864. https://doi.org/10.1093/biolre/ioac031
Korfanty, J., Toma, A., Wojtas, A., Rusin, A., Vydra, N., & Widlak, W. (2012). Identification of a new mouse sperm acrosome-associated protein. Reproduction, 143(6), 749–757. https://doi.org/10.1530/REP-11-0270
Kumaresan, A., Sinha, M. K., Paul, N., Nag, P., Samuel King, J. P. E., Kumar, R., & Datta, T. K. (2023). Establishment of a repertoire of fertility associated sperm proteins and their differential abundance in buffalo bulls (Bubalus bubalis) with contrasting fertility. Scientific Reports, 13(1), 29529. https://doi.org/10.1038/s41598-023-29529-5
Kusumawati, A., Satrio, F. A., Indriastuti, R., Rosyada, Z. N. A., Pardede, B. P., Agil, M., & Purwantara, B. (2023). Sperm head morphology alterations associated with chromatin instability and lack of protamine abundance in frozen-thawed sperm of Indonesian local bulls. Animals, 13(15), 2433. https://doi.org/10.3390/ani13152433
Leung, E. T. Y., Lee, B. K. M., Lee, C. L., Tian, X., Lam, K. K. W., Li, R. H. W., Ng, E. H. Y., Yeung, W. S. B., Ou, J. P., & Chiu, P. C. N. (2023). The role of spermatozoa–zona pellucida interaction in selecting fertilization-competent spermatozoa in humans. Frontiers in Endocrinology, 14, 1135973. https://doi.org/10.3389/fendo.2023.1135973
Lin, Y.-N., Roy, A., Yan, W., Burns, K. H., & Matzuk, M. M. (2007). Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Molecular and Cellular Biology, 27(19), 6794–6805. https://doi.org/10.1128/MCB.01029-07
Maulana, T., Said, S., Arifiantini, R. I., Jakaria, J., & Gunawan, A. (2025). Proteomic analysis of Toraya buffalo seminal plasma and sperm: Uncovering insights to optimize reproductive success. Frontiers in Veterinary Science, 12, 1492135. https://doi.org/10.3389/fvets.2025.1492135
Nagdas, S. K., Smith, L., Medina-Ortiz, I., Hernandez-Encarnacion, L., & Raychoudhury, S. (2017). Identification of bovine sperm acrosomal proteins that interact with a 32 kDa acrosomal matrix protein. Physiology & Behavior, 176(1), 100–106. https://doi.org/10.1177/0022146515594631
Rosyada, Z. N. A., Pardede, B. P., Kaiin, E. M., Gunawan, M., Maulana, T., Said, S., Tumbelaka, L. I. T. A., Solihin, D. D., Ulum, M. F., & Purwantara, B. (2023). A proteomic approach to identifying spermatozoa proteins in Indonesian native Madura bulls. Frontiers in Veterinary Science, 10, 1287676. https://doi.org/10.3389/fvets.2023.1287676
Rusdin, M., Solihin, D. D., Gunawan, A., Talib, C., & Sumantri, C. (2020). Genetic Variation of eight Indonesian swamp-buffalo populations based on cytochrome b gene marker. Tropical Animal Science Journal, 43(1), 1–10. https://doi.org/10.5398/tasj.2020.43.1.1
Sanches, P. H. G., de Melo, N. C., Porcari, A. M., & de Carvalho, L. M. (2024). Integrating molecular perspectives: Strategies for comprehensive multi-omics integrative data analysis and machine learning applications in transcriptomics, proteomics, and metabolomics. Biology, 13(11), 848. https://doi.org/10.3390/biology13110848
Sanchez, R., Tourmente, M., & Roldan, E. R. S. (2022). Effect of high viscosity on energy metabolism and kinematics of spermatozoa from three mouse species incubated under capacitating conditions. International Journal of Molecular Sciences, 23(23), 15247. https://doi.org/10.3390/ijms232315247
Satrio, F. A., Karja, N. W. K., Setiadi, M. A., Kaiin, E. M., Pardede, B. P., & Purwantara, B. (2024). Age-dependent variations in proteomic characteristics of spermatozoa in Simmental bull. Frontiers in Veterinary Science, 11, 1393706. https://doi.org/10.3389/fvets.2024.1393706
Selvam, M. K. P., Finelli, R., Agarwal, A., & Henkel, R. (2020). Proteomics and metabolomics: Current and future perspectives in clinical andrology. Andrologia, 53(2), e13711. https://doi.org/10.1111/and.13711
Song, C., Zhou, H., Gao, B., Sun, L., Wu, H., Wang, X., Chen, G., & Mao, J. (2010). Molecular cloning of pig ZPBP2 and mRNA expression of ZPBP1 and ZPBP2 in reproductive tracts of boars. Animal Reproduction Science, 122(3–4), 229–235. https://doi.org/10.1016/j.anireprosci.2010.08.016
Wahyuni, R., & Dewi, R. A. (2018). Appropriate technology in order to development of Pesisir local cattle at the West Sumatera. Jurnal Litbang Pertanian, 37(2), 49–58. https://doi.org/10.21082/jp3.v37n2.2018.p49-58
Zheng, H., Mandal, A., Shumilin, I., Chordia, M. D., Panneerdoss, S., Herr, J. C., & Minor, W. (2015). Sperm lysozyme-like protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form. Andrology, 3(2), 263–266. https://doi.org/10.1111/andr.12057
Zhou, H., Zhang, Z., Qu, R., Zhu, H., Luo, Y., Li, Q., Mu, J., Yu, R., Zeng, Y., Chen, B., Sang, Q., & Wang, L. (2024). CCDC28A deficiency causes sperm head defects, reduced sperm motility and male infertility in mice. Cellular and Molecular Life Sciences, 81(1), 1–13. https://doi.org/10.1007/s00018-024-05184-5
Authors
Copyright (c) 2025 Tropical Animal Science Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.