Nutritional Composition and In Vitro Digestibility of Spent Mushroom Substrate Supplemented with Urea and Molasses for Ruminants

J. C. A. Crisostomo(1) , J. J. D. Manlapig(2) , H. Matsui(3) , T. Ban-Tokuda(4)
(1) Laboratory of Animal Production, Graduate School of Bioresources, Mie University,
(2) Laboratory of Animal Production, Graduate School of Bioresources, Mie University,
(3) Laboratory of Animal Production, Graduate School of Bioresources, Mie University,
(4) Laboratory of Animal Production, Graduate School of Bioresources, Mie University

Abstract

This study aims to evaluate the fermentation characteristics and nutritional potential of spent mushroom substrates (SMS), with or without urea and molasses supplementation, in ruminant diets. SMS derived from the cultivation of four mushroom species—Pleurotus ostreatus (Oyster Mushroom, OYS), Flammulina filiformis (Enoki mushroom, ENK), Hypsizygus marmoreus (Bunashimeji mushroom, SMJ), and Lentinula edodes (Shiitake, STK)—were analyzed for proximate composition, in vitro gas and methane (CH₄) production, dry matter digestibility (DMD), and short-chain fatty acid (SCFA). Statistically significant differences were observed among SMS types across all incubation periods (24, 48, and 72 hours) for gas production, CH₄ production, DMD, and SCFA concentrations (p<0.0001). In addition, CH₄ per gram of digested dry matter (CH₄/DDM) was higher in urea–molasses supplemented SMS compared to non-supplemented substrates (p<0.05). However, no significant differences were observed in total gas production, CH₄ volume, or SCFA concentrations between the two groups, suggesting that fermentation responses were influenced not only by supplementation but also by the inherent differences in substrate composition. The results indicate that different types of SMS vary significantly in their fermentation profiles and digestibility. Supplementation with urea and molasses increased CH₄/DDM but did not significantly affect total gas, CH₄ volume, or SCFA production. These findings demonstrate the potential of SMS as a partial roughage replacement in ruminant diets, as influenced by the type of mushroom substrate, its chemical composition, and the supplementation method.

Full text article

Generated from XML file

References

Akinfemi, A., Adebayo, B. J., & Ogunbosoye, D. O. (2020). Nutritional improvement of rice straw treated with urea-molasses and its effect on in vitro digestibility. Journal of Agricultural Science and Practice, 5(1), 74-79. https://doi.org/10.31248/JASP2019.181

Akinfemi, A., Adebayo, B. J., & Ososanya, T. O. (2018). Effect of urea-molasses treatment on chemical composition and in vitro digestibility of maize cobs. Nigerian Journal of Animal Science, 20(1), 98-105.

Amirault, K., Wright, R., Sujani, S., Dos Reis, B. R., Osorio, J., Fernandes, T., & White, R. R. (2024). Ruminal pH sensing for monitoring volatile fatty acid concentrations in response to short-term dietary disruption. JDS Communications, 5(2), 91-95. https://doi.org/10.3168/jdsc.2023-0409

Andhale, V. T. (2024). Exploring the power of non-conventional feed resources in animal nutrition. Acta Scientific Veterinary Sciences, 6(2), 45-47. https://doi.org/10.31080/ASVS.2024.06.0813

Anotaenwere, C. C., Isikhuemhen, O. S., Dele, P. A., Wuaku, M., Alabi, J. O., Adelusi, O. O., Okedoyin, D. O., Ike, K. A., Gray, D., Kholif, A. E., & Anele, U. Y. (2024). Ensiled Pleurotus ostreatus based spent mushroom substrate from corn: In vitro gas production, greenhouse gas emissions, nutrient degradation, and ruminal fermentation characteristics. AIMS Microbiology, 11(1), 1. https://doi.org/10.3934/microbiol.2025001

Antunes, F., Marçal, S., Taofiq, O., MMB Morais, A., Freitas, A. C., CFR Ferreira, I., & Pintado, M. (2020). Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules, 25(11), 2672. https://doi.org/10.3390/molecules25112672.

AOAC International. (2000). Official methods of analysis of AOAC International (Vol. 17, No. 1-2). AOAC International.

Aquino, D., Barrio, A. D., Trach, N. X., Hai, N. T., Khang, D. N., Toan, N. T., & Hung, N. V.. (2020). In Gummert, M., Hung, N., Chivenge, P., & Douthwaite, B. (eds), Sustainable rice straw management (pp. 111–129). Springer. https://doi.org/10.1007/978-3-030-32373-8_7

Aruwayo, A. (2018). Use of urea treated crop residue in ruminant feed. International Journal of Advances in Scientific Research and Engineering, 4(7), 54-64. http://doi.org/10.31695/IJASRE.2018.32794

Bashar, M. K., Haese, E., Sultana, N., & Rodehutscord, M. (2024). In vitro ruminal fermentation, methane emissions, and nutritional value of different tropical feedstuffs for ruminants. Journal of Advanced Veterinary and Animal Research, 11(4), 924. https://doi.org/10.5455/javar.2024.k842

Chen, B. Y., Wu, P. S., & Wang, H. T. (2025). Assessment of alkali-treated spent mushroom substrate supplemented with condensed molasses solubles (CMS) as an alternative forage source for ruminants through in vitro fermentation. Fermentation, 11(2), 92. https://doi.org/10.3390/fermentation11020092

Cheva-Isarakul, B. L., & Kanjanapruthipong, J. (1987). A comparison of urea-treated rice straw with urea-molasses sprayed rice straw as basal diets for growing cattle. Proceedings of the Sixth Annual Workshop of the Australian Asian Fibrous Agricultural Residues Research Network, Los Banos, 1-3 April pp. 191-198.

Crisostomo, J. C. A., Manlapig, J. J. D., Orden, E. A., & Velasco, V. V. (2022). Acacia pods (Samanea saman) as a substitute for concentrate on growing and lactating goats. Philippine Journal of Veterinary & Animal Sciences, 48(2), 65-79.

Etela, I., Ogbeide, A., Ukanwoko, A. I., & Adedokun, O. M. (2018). Spent substrates from three species of mushroom as alternative feed resources for ruminant livestock. The Journal of Solid Waste Technology and Management, 44(1), 15-20. https://doi.org/10.5276/JSWTM.2018.15

Faniyi, T. O., Adegbeye, M. J., Elghandour, M. M. M. Y., Pilego, A. B., Salem, A. Z. M., Olaniyi, T. A., Adediran, T. A., & Adewumi, M. K. (2019). Role of diverse fermentative factors towards microbial community shift in ruminants. Journal of Applied Microbiology, 127(1), 2-11.https://doi.org/10.1111/jam.14212

Getachew, G., Makkar, H. P. S., & Becker, K. (2002). Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. The Journal of Agricultural Science, 139(3), 341-352. https://doi.org/10.1017/S0021859602002393

Goyal, M., Kaur, R. P., Pal, R. P., & Singh, D. P. (2023). Effect of mixing paddy straw with molasses and urea on fermentation characteristics and nutritive value of maize silage. The Indian Journal of Animal Sciences, 93(10), 985-992. https://doi.org/10.56093/ijans.v93i10.134389

Grimm, D., & Wösten, H. A. (2018). Mushroom cultivation in the circular economy. Applied Microbiology and Biotechnology, 102, 7795-7803. https://doi.org/10.1007/s00253-018-9226-8.

Jiang, W., Han, G., Via, B. K., Tu, M., Liu, W., & Fasina, O. (2014). Rapid assessment of coniferous biomass lignin–carbohydrates with near-infrared spectroscopy. Wood Science and Technology, 48, 109-122. https://doi.org/10.1371/journal.pone.0256559

Kalvandi, S., Zaboli, K., & Malecky, M. (2018). Effect of spent mushroom compost (Agaricus bisporus) silage processing on its chemical composition, digestibility and ruminal fermentation kinetic in Mehraban sheep. Animal Production Research, 7, 69–82. https://doi.org/10.22124/ar.2018.9256.1270

Kim, S. H., Mamuad, L. L., Jeong, C. D., Choi, Y. J., Lee, S. S., Ko, J. Y., & Lee, S. S. (2013). In vitro evaluation of different feeds for their potential to generate methane and change methanogen diversity. Asian-Australasian Journal of Animal Sciences, 26(12), 1698. https://doi.org/10.5713/ajas.2013.13260

Kim, Y. I., Oh, Y. K., Park, K. K., & Kwak, W. S. (2014). Ensiling characteristics and the in situ nutrient degradability of a by-product feed-based silage. Asian-Australasian Journal of Animal Sciences, 27(2), 201-208. https://doi.org/10.5713/ajas.2013.13448

Kousar, A., Khan, H. A., Farid, S., Zhao, Q., & Zeb, I. (2024). Recent advances on environmentally sustainable valorization of spent mushroom substrate: A review. Biofuels, Bioproducts and Biorefining, 18(2), 639-651. https://doi.org/10.1002/bbb.2559

Kwak, W. S., Kim, Y. I., Seok, J. S., Oh, Y. K., & Lee, S. M. (2009). Molasses and microbial inoculants improve fermentability and silage quality of cotton waste-based spent mushroom substrate. Bioresource Technology, 100(3), 1471-1473. https://doi.org/10.1016/j.biortech.2008.07.066

Leong, Y. K., Ma, T. W., Chang, J. S., & Yang, F. C. (2022). Recent advances and future directions on the valorization of spent mushroom substrate (SMS): A review. Bioresource Technology, 344, 126157. https://doi.org/10.1016/j.biortech.2021.126157

Li, Y., Lv, J., Wang, J., Zhou, S., Zhang, G., Wei, B., Sun, Y., Lan, Y., Dou, X., & Zhang, Y. (2021). Changes in carbohydrate composition in fermented total mixed ration and its effects on in vitro methane production and microbiome. Frontiers in Microbiology, 12, 738334. https://doi.org/10.3389/fmicb.2021.738334

Løvendahl, P., Difford, G. F., Li, B., Chagunda, M. G. G., Huhtanen, P., Lidauer, M. H., Lassen, J., & Lund, P. (2018). Review: Selecting for improved feed efficiency and reduced methane emissions in dairy cattle. Animal, 12(s2), s336-s349. https://doi.org/10.1017/S1751731118002276

Ma, Y., Chen, X., Zahoor Khan, M., Xiao, J., Liu, S., Wang, J., He, Z., Li, C., & Cao, Z. (2020). The impact of ammoniation treatment on the chemical composition and in vitro digestibility of rice straw in Chinese Holsteins. Animals, 10(10), 1854. https://doi.org/10.3390/ani10101854

Mandey, J. S., Kowel, Y. H. S., Regar, M. N., & Leke, J. R. (2017). Effect of different level of energy and crude fiber from sawdust in diets on carcass quality of broiler. https://10.14710/jitaa.42.4.240-246

Manlapig, J. J. D., Ban‐Tokuda, T., & Matsui, H. (2023). Nutritional quality and organic acid profile of rice bran fermented with lactic acid bacteria isolated from horse feces. Animal Science Journal, 94(1), e13860. https://doi.org/10.1111/asj.13860

Manlapig, J. J. D., Kawakami, S., Matamura, M., Kondo, M., Ban-Tokuda, T., & Matsui, H. (2024a). Effect of rice bran extract on in vitro rumen fermentation and methane production. Animal Science Journal, 95(1), e13923. https://doi.org/10.1111/asj.13923

Manlapig, J. J. D., Kondo, M., Ban‐Tokuda, T., & Matsui, H. (2024b). Effect of rice bran fermented with Ligilactobacillus equi on in vitro fermentation profile and microbial population. Animal Science Journal, 95(1), e13955. https://doi.org/10.1111/asj.13955

Matsui, H., Wakabayashi, H., Fukushima, N., Ito, K., Nishikawa, A., Yoshimi, R., Ogawa, Y., Yoneda, S., Ban-Tokuda, T., & Wakita, M. (2013). Effect of raw rice bran supplementation on rumen methanogen population density and in vitro rumen fermentation. Grassland Science, 59(3), 129–134. https://doi.org/10.1111/grs.12023

Mordenti, A. L., Giaretta, E., Campidonico, L., Parazza, P., & Formigoni, A. (2021). A review regarding the use of molasses in animal nutrition. Animals, 11(1), 115. https://doi.org/10.3390/ani11010115

Muqier, X., Eknæs, M., Prestløkken, E., Jensen, R. B., Eikanger, K. S., Karlengen, I. J., troan, G., Vhile, S. G., & Kidane, A. (2023). In vitro rumen fermentation characteristics, estimated utilizable crude protein and metabolizable energy values of grass silages, concentrate feeds and their mixtures. Animals, 13(17), 2695. https://doi.org/10.3390/ani13172695

Oladosu, Y., Rafii, M. Y., Abdullah, N., Magaji, U., Hussin, G., Ramli, A., & Miah, G. (2016). Fermentation quality and additives: a case of rice straw silage. BioMed Research International, 2016(1), 7985167. https://doi.org/10.1155/2016/7985167

Palangi, V., Kaya, A., Kaya, A., & Giannenas, I. (2022). Ecofriendly usability of mushroom cultivation substrate as a ruminant feed: Anaerobic digestion using gas production techniques. Animals, 12(12), 1583. https://doi.org/10.3390/ani12121583

Parchami, M., Rustas, B. O., Taherzadeh, M. J., & Mahboubi, A. (2024). Effect of agro-industrial by products derived from volatile fatty acids on ruminant feed in vitro digestibility. Animals, 14(16), 2330. https://doi.org/10.3390/ani14162330

Ramírez, G. R., Aguilera-Gonzalez, J. C., Garcia-Diaz, G., & Núñez-González, A. M. (2007). Effect of urea treatment on chemical composition and digestion of Cenchrus ciliaris and Cynodon dactylon Hays and Zea mays residues. Journal of Animal and Veterinary Advances, 6(8), 1036-1041.

Rangubhet, K. T., Mangwe, M. C., Mlambo, V., Fan, Y. K., & Chiang, H. I. (2017). Enteric methane emissions and protozoa populations in Holstein steers fed spent mushroom (Flammulina velutipes) substrate silage-based diets. Animal Feed Science and Technology, 234, 78-87. https://doi.org/10.1016/j.anifeedsci.2017.06.005

Rangubhet, T., Kongmun, P., Prasanpanich, S., & Chiang, H. I. (2020). Nutritional evaluation of spent mushroom substrate from Pleurotus ostreatus and P. citrinopileatus as roughage for meat goats. In 58. Kasetsart University Annual Conference, Bangkok (Thailand), 5-7 Feb 2020.

Reddy, P. R. K., & Hyder, I. (2023). Ruminant Digestion. In: Das, P. K., Sejian, V., Mukherjee, J., & Banerjee, D. (Eds), Textbook of Veterinary Physiology. Springer, Singapore. https://doi.org/10.1007/978-981-19-9410-4_14

Ridla, M., Jayanegara, A., & Nahrowi, N. (2025). Evaluation of silage quality, rumen fermentation dynamics, degradability, and methane emissions of total mixed rations formulated from agricultural by-products: an in vitro analysis. Journal of Animal and Feed Sciences. https://doi.org/10.22358/jafs/200863/2025

Rinne, M., Franco, M., Jalava, T., Järvenpää, E., Kahala, M., Blasco, L., Siljander-Rasi, H., & Kuoppala, K. (2019). Carrot by-product fermentation quality and aerobic spoilage could be modified with silage additives. Agricultural and Food Science, 28(2), 59–69. https://doi.org/10.23986/afsci.79829

Royse, D. J., Baars, J., & Tan, Q. (2017). Current overview of mushroom production in the world. In Diego, C. Z., & Pardo-Giménez (Eds.), Edible and medicinal mushrooms: technology and applications, 5-13. https://doi.org/10.1002/9781119149446.ch2

Sallam, S., Rady, A., Attia, M. F., Elazab, M. A., Vargas-Bello-Pérez, E., & Kholif, A. E. (2024). Different maize silage cultivars with or without urea as a feed for ruminant: chemical composition and in vitro fermentation and nutrient degradability. Chilean Journal of Agricultural & Animal Sciences, 40(1), 137-149. https://dx.doi.org/10.29393/chjaas40-14dmsa60014

Shah, A. M., Zhang, H., Shahid, M., Ghazal, H., Shah, A. R., Niaz, M., Naz, T., Ghimire, K., Goswami, N., Shi, W., Xia, D., & Zhao, H. (2025). The vital roles of agricultural crop residues and agro-industrial by-products to support sustainable livestock productivity in subtropical regions. Animals, 15(8), 1184. https://doi.org/10.3390/ani15081184

Shen, J., Zheng, W., Xu, Y., & Yu, Z. (2023). The inhibition of high ammonia to in vitro rumen fermentation is pH dependent. Frontiers in Veterinary Science, 10, 1163021. https://doi.org/10.3389/fvets.2023.1163021

Souza, M. N., Ferrer, M. D., Bezerra, L. R., de Andrade, E. A., Pereira Filho, J. M., Barbosa, A. M., Silva, T. M., Pereira, E. S., da Silva Junior, J. M., Batista, T. S., Mazza, P. H. S. & Oliveira, R. L. (2024). Effect of mushroom crop residue on growth performance, carcass traits, nutrient digestibility, nitrogen balance, ingestive behavior, ruminal and blood parameters of lambs. Animal Feed Science and Technology, 315, 116045. https://doi.org/10.1016/j.anifeedsci.2024.116045

Sundstol, F., & Coxworth, E. M. (1984). Ammonia treatment. In Straw and other fibrous by-products as feed (pp. 196-247). Elsevier Amsterdam.

Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Wahyono, T., Sholikin, M. M., Konca, Y., Obitsu, T., Sadarman, S., & Jayanegara, A. (2022). Effects of urea supplementation on ruminal fermentation characteristics, nutrient intake, digestibility, and performance in sheep: A meta-analysis. Veterinary World, 15(2), 331. https://doi.org/10.14202/vetworld.2022.331-340

Wang, W., Wang, Y., Cui, Z., Yang, Y., An, X., & Qi, J. (2022). Fermented wheat bran polysaccharides intervention alters rumen bacterial community and promotes rumen development and growth performance in lambs. Frontiers in Veterinary Science, 9, 841406. https://doi.org/10.3389/fvets.2022.841406

Widodo, S., Shiddieqy, M. I., Wahyono, T., Widiawati, Y., & Muttaqin, Z. (2023). Analysis of correlation between nutrient content, digestibility, and gas production of forages in Indonesia. Advances in Animal and Veterinary Sciences, 11(11), 1770-1778. https://dx.doi.org/10.17582/journal.aavs/2023/11.11.1770.1778

Yi, Q., Wang, P., Tang, H., Yu, M., Zhao, T., Sheng, Z., & Luo, H. (2023). Fermentation quality, in vitro digestibility, and aerobic stability of ensiling spent mushroom substrate with microbial additives. Animals, 13(5), 920. https://doi.org/10.3390/ani13050920

Zaboli, K., Kalvandi, S., Malecky, M., & Nasrabadi, M. (2023). Nutritional Value of Spent Mushroom (Agaricus bisporus) Compost silage treated with different level of molasses in sheep feeding. Iranian Journal of Applied Animal Science, 13(1), 57-65

Zheng, W., Duan, H., Cao, L., Mao, S., & Shen, J. (2024). Acid-base properties of non-protein nitrogen affect nutrients intake, rumen fermentation and antioxidant capacity of fattening Hu sheep. Frontiers in Veterinary Science, 11, 1381871. https://doi.org/10.3389/fvets.2024.1381871

Authors

J. C. A. Crisostomo
J. J. D. Manlapig
H. Matsui
T. Ban-Tokuda
tomomi@bio.mie-u.ac.jp (Primary Contact)
Crisostomo, J. C. A., Manlapig, J. J. D., Matsui, H., & Ban-Tokuda, T. (2025). Nutritional Composition and In Vitro Digestibility of Spent Mushroom Substrate Supplemented with Urea and Molasses for Ruminants. Tropical Animal Science Journal, 48(4), 364-373. https://doi.org/10.5398/tasj.2025.48.4.364

Article Details

How to Cite

Crisostomo, J. C. A., Manlapig, J. J. D., Matsui, H., & Ban-Tokuda, T. (2025). Nutritional Composition and In Vitro Digestibility of Spent Mushroom Substrate Supplemented with Urea and Molasses for Ruminants. Tropical Animal Science Journal, 48(4), 364-373. https://doi.org/10.5398/tasj.2025.48.4.364

List of Cited By :

Crossref logo