Microbiome Dynamic: Diversity in Healthy and Mastitis Milk Herd
Abstract
Bovine mastitis is the inflammation of udder due to physical injury or microbial infections. The milk from different mastitis statuses present different microbial profiles that can impact the mechanisms and pathophysiology of mastitis. An increasing number of studies provided evidence indicating the occurrence of dysbiosis in the microbiota during clinical mastitis. Our study aimed to investigate the shifts in mastitis milk microbiota over a three-week period within a Jersey Friesian mastitis herd in a local farm (n=20). The milk samples were collected from healthy animals (HT), clinical mastitis milk at different time frames throughout three weeks (W1, W2, and W3) (n=5). Microbial genomic DNA from milk samples was extracted and then submitted for 16S amplicon sequencing. The 16S amplicon sequencing analysis revealed that the predominant phyla in the core microbiota were Firmicutes, Actinobacteriota, Proteobacteria, and Bacteroidota. Alpha diversity indicated the presence of lower bacterial diversity in the clinical mastitis group across the weeks (W1, W2, W3) in comparison to the healthy (HT) group. Among the four dominant phyla, Firmicutes exhibited the highest percentage of abundancy (HT=35.40%; W1=63.10%; W2=89.32%; W3=90.86%), followed by Actinobacteriota (HT=34.08%; W1=7.87%; W2=1.01%; W3=6.95%), Proteobacteria (HT=11.17%; W1=18.69%; W2=7.50%; W3=1.14%), and Bacteroidota (HT=14.77%; W1=1.86%; W2=1.01%; W3=0.88%). The diversity indices exhibited a decreasing trend from W1 to W3 (Chao1 index: HT=323, W1=297, W2=69, W3=35; Shannon index: HT=3.41, W1=3.87, W2=1.50, W3=0.92). Beta diversity displayed a scattered pattern of sample clustering in PCA plots among different groups. In conclusion, the dominance of Firmicutes persisted throughout the weeks, while other populations decreased over the specified time frame. The healthy (HT) group maintained a more diverse distribution of phyla.
Full text article
References
Al-Farha, A. A., Hemmatzadeh, F., Khazandi, M., Hoare, A., & Petrovski. (2017). Evaluation of effects of Mycoplasma mastitis on milk composition in dairy cattle from South Australia. BMC Veterinary Research, 13(351), 1-8. https://doi.org/10.1186/s12917-017-1274-2
Ariffin, S. M. Z., Hasmadi, N., Syawari, N.M., Sukiman, M. Z., Ariffin, M. F. T., Hian, A. M., & Ghazali, M. F. (2019). Prevalence and antibiotic susceptibility pattern of Staphylococcus aureus, Streptococcus agalactiae and Escherichia coli in dairy goats with clinical and subclinical mastitis. Journal of Animal Health and Production, 7(1), 32-37. https://doi.org/10.17582/journal.jahp/2019/7.1.32.37
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). DADA2:high-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. .I, Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, M. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., & Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335-336. https://doi.org/10.1038/nmeth.f.303
Derakhshani, H., Fehr, K. B., Sepehri, S., Francoz, D., De Buck, J., Barkema, H. W., Plaizier, J. C., & Khafipuor, E. (2018). Invited review: Microbiota of the bovine udder: Contributing factors and potential implications for udder health and mastitis susceptibility. Journal of Dairy Science, 101(12), 10605-10625. https://doi.org/10.3168/jds.2018-14860
Fox, L. K. (2012). Mycoplasma mastitis: causes, transmission, and control. Veterinary Clinics of North America, Food Animal Practice, 28(2), 225–237. https://doi.org/10.1016/j.cvfa.2012.03.007
Hamady, M., Walker, J. J., Harris, J. K., Gold, N. J., & Knight, R. (2008). Error‐correcting barcoded primers allow hundreds of samples to be pyrosequenced in multiplex. Nature Methods, 5(3), 235–237. https://doi.org/10.1038/nmeth.1184
Hoque, N. M., Istiaq, A., Clement, R. A., Sultana, M., Crandall, K. A., Siddiki, A. Z., & Hossain, M. A. (2019). Metagenomic deep sequencing reveals association of microbiome signature with functional biases in bovine mastitis. Scientic Reports, 9, 13536. https://doi.org/10.1038/s41598-019-49468-4
Kennedy, R., Lappin, D. F., Dixon, P. M., Buijs, M. J., Zaura, E., Crielaard, W., O’Donnell, L., Bennett, D., Brandt, B. W., & Riggio, & M. P. (2016). The microbiome associated with equine periodontitis and oral health. Veterinary Research, 47, 49. https://doi.org/10.1186/s13567-016-0333-1
Kuehn, J. S., Gorden, P. J., Munro, D., Rong, R., Dong, Q., Okynner, P. J., Wang, C., & Philips, G. J. (2013). Bacterial community profiling of milk samples as a means to understand culture-negative bovine clinical mastitis. Plos one, 8(4), e61959. https://doi.org/10.1371/journal.pone.0061959
Lam, T. J. G. M., Olde Riekerink, R. G. M., Sampimon, O. C., and Smith, H. (2009). Mastitis diagnostics and performance monitoring: a practical approach. Irish Veterinary Journal, 62(S34), 34-39. https://doi.org/10.1186/2046-0481-62-S4-S34
Marimuthu, M., Firdaus, F. A., Mohammed, K., Poshpum, S. S., Adamu, L., Osman, A. Y., Abba, Y., & Tijjani, A. (2014). Prevalence and antimicrobial resistance assessment of subclinical mastitis in milk samples from selected dairy farms. American Journal of Animal and Veterinary Sciences, 9(1), 65-70. https://doi.org/10.3844/ajavsp.2014.65.70
Okella, H., Tonooka, K., & Okello, E. (2023). A systematic review of the recent techniques commonly used in the diagnosis of Mycoplasma bovis in dairy cattle. Pathogens, 12(9), 1178. https://doi.org/10.3390/pathogens12091178
Parker, A. M., Sheehy, P. A., Hazelton, M. S., Bosward, K. L., & House, J. K. (2018). A review of mycoplasma diagnostics in cattle. Journal of veterinary internal medicine, 32(3), 1241–1252. https://doi.org/10.1111/jvim.15135
Porcella, D., Meisal, R., Bombelli, A., & Narvhus, J. A. (2020). A core microbiota dominates a rich microbial diversity in the bovine udder and may indicate presence of dysbiosis. Scientific Reports, 10, 21608. https://doi.org/10.1038/s41598-020-77054-6
Patek, M., Grulich, M., & Nesvera, J. (2021). Stress response in Rhodococcus strains. Biotechnology Advances, 53, 107698. https://doi.org/10.1016/j.biotechadv.2021.107698
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and webbased tools. Nuclic Acids Research, 41(D1), D590D596. https://doi.org/10.1093/nar/gks1219
Ryan, M. P., Pembroke, J. T., & Adley, C. C. (2011). Genotypic and phenotypic diversity of Ralstonia pickettii and Ralstonia insidiosa isolates from clinical and environmental sources including High-purity Water. Diversity in Ralstonia pickettii. BMC Microbiology, 11: 194. https://doi.org/10.1186/1471-2180-11-194
Tan, Y. J., Koh, S. P., Khozirah, S., Manthan, J., Khirrol, N. A. W., Rosly, S. M., Mohd-Shaharizan, M. S., & Tan, G. H. (2023). Genomic mapping milk microbiota from healthy, sub-clinical and clinical mastitis of Jersey Friesian cattle in a Malaysian farm. Food Research, 6 (Suppl. 4), 29-43. https://doi.org/10.26656/fr.2017.6(S4).006
Vechi, H. T., Oliveira, E. T. G., Freitas, M. R., Rossi, F., Britto, M. H. M. F., & Alves, M. D. M. (2018). Chronic cavitary pneumonia by Rhodococcus equi in a highly prevalent tuberculosis country: a diagnosis challenge. Revista do Instituto de Medicina Tropical de São Paulo, 14 (60), e74. https://doi.org/10.1590/s1678-9946201860074
Żychska, M., Witkowski, L., Klementowska, A., Rzewuska, M., Kwiecień, E., Stefańska, I., Czopowicz, M., Szaluś-Jordanow, O., Mickiewicz, M., Moroz, A., Bonecka, J., & Kaba, J. (2021). Rhodococcus equi-Occurrence in goats and clinical case report. Pathogens, 10(9), 1141. https://doi.org/10.3390/pathogens10091141
Authors
Copyright (c) 2025 Tropical Animal Science Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.