Bovine Digesta as Organic Fertilizer in Gliricidia Fodder Banks: Agronomic Responses and Nutrient Composition
Abstract
Bovine digesta is an innovative by-product from slaughterhouses to fertilize forage crops, but applying excessive amounts can be inefficient in terms of dry matter yield (DMY) and nutritional characteristics. A two-year trial, which encompassed two rainy and two dry seasons, was conducted to assess the agronomic responses and nutrient composition of gliricidia fertilized with increasing levels of slaughterhouse bovine digesta (0, 1.25, 3.12, 6.25, 9.37, and 12.50 t/ha). Gliricidia DMY enhanced linearly from 8.0 to 15.9 t/ha/yr of DM as the bovine digesta dosage increased from 0 to 12.50 t/ha (p=0.0003). The DMY stability variance increased from 0 (σi2 = 0.10) to 12.50 t/ha (σi2 =14.09), so the bovine digesta reduced the DMY stability. Plant height also responded linearly to the fertilizer levels (p<0.0001). Consistent gains in leaf crude protein concentration (21.8, 22.5, 23.0, 23.7, 24.4, and 24.9 % DM for 0.00, 1.25, 3.12, 6.25, 9.37 and 12.50 t/ha, respectively) were observed because of the fertilizer levels (p<0.0001). As the gliricidia responds linearly to the bovine digesta fertilization regarding important agronomic and nutrient-composition traits, we recommend applying the top required dose (12.50 t/ha) to combine maximum forage yield and great roughage nutrient composition. It is not worth saving the organic fertilizer by using lower dosages.
Full text article
References
Ahmed, M. A., Jusoh, S., Alimon, A. R., Ebrahimi, M., & Samsudin, A. A. (2018). Nutritive and anti-nutritive evaluation of Kleinhovia hospita, Leucaena leucocephala and Gliricidia sepium with respect to their effects on in vitro rumen fermentation and gas production. Tropical Animal Science Journal, 41(2), 128-136. https://doi.org/10.5398/tasj.2018.41.2.128
Alamu, E. O., Adesokan, M., Fawole, S., Maziya-Dixon, B., Mehreteab, T., & Chikoye, D. (2023). Gliricidia sepium (Jacq.) walp applications for enhancing soil fertility and crop nutritional qualities: a review. Forests, 14(3), 635. https://doi.org/10.3390/f14030635
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. D. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507.
Amole, T., Augustine, A., Balehegn, M., & Adesogoan, A. T. (2022). Livestock feed resources in the West African Sahel. Agronomy Journal, 114(1), 26-45. https://doi.org/10.1002/agj2.20955
Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1-9. https://doi.org/10.1016/j.scienta.2017.07.033
AOAC (2005). Official methods of analysis of AOAC International (18th eds). AOAC International.
Bayala, J., Ky-Dembele, C., Coe, R., Binam, J. N., Kalinganire, A., & Olivier, A. (2023). Frequency and period of pruning affect fodder production of Gliricidia sepium (Jacq.) Walp. and Pterocarpus erinaceus Poir. in the Sahel. Agroforestry Systems, 97(7), 1307-1321. https://doi.org/10.1007/s10457-022-00779-y
Bergstrand, K. J. (2022). Organic fertilizers in greenhouse production systems–a review. Scientia Horticulturae, 295, 110855. https://doi.org/10.1016/j.scienta.2021.110855
Bezerra Neto, E., Barreto, L. P. (2011). Análises químicas e bioquímicas em plantas. (1st ed.). UFRPE.
Bhunia, S., Bhowmik, A., Mallick, R., & Mukherjee, J. (2021a). Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: A review. Agronomy, 11(5), 823. https://doi.org/10.3390/agronomy11050823
Bhunia, S., Bhowmik, A., Mallick, R., Debsarcar, A., & Mukherjee, J. (2021b). Application of recycled slaughterhouse wastes as an organic fertilizer for successive cultivations of bell pepper and amaranth. Scientia Horticulturae, 280, 109927. https://doi.org/10.1016/j.scienta.2021.109927
Camargo, Â. P. D., & Camargo, M. B. P. D. (2000). Uma revisão analítica da evapotranspiração potencial. Bragantia, 59, 125-137.
Castro-Montoya, J. M., & Dickhoefer, U. (2020). The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review. Animal Feed Science and Technology, 269, 114641. https://doi.org/10.1016/j.anifeedsci.2020.114641
Cavalcanti, F. J. A. (2008). Fertilization recommendation for the Pernambuco State: 2nd approximation. (3rd ed.). Agronomic Institute from Pernambuco State.
Dhillon, R. S., Beniwal, R. S., Satpal, M. J., & Kumari, S. (2023). Tree fodder for nutritional security and sustainable feeding of livestock-A review. Forage Research, 49, 21-28.
Edvan, R. L., & Carneiro, M. S. S. (2011). Use of bovine digesta as organic fertilizer. Applied Research & Agrotechnology, 4(2), 211-225. https://doi.org/10.5777/paet.v4i2.1315
Fungo, B., Buyinza, J., Sekatuba, J., Nansereko, S., Ongodia, G., Kwaga, P., & Agaba, H. (2020). Forage biomass and soil aggregate carbon under fodder banks with contrasting management regimes. Agroforestry Systems, 94, 1023-1035. https://doi.org/10.1007/s10457-019-00473-6
Guadayo, G. F., Rayos, A. A., Merca, F. E., Tandang, A. G., Loresco, M. M., & Angeles, A. A. (2019). Prediction of in situ ruminal degradability of forages in buffaloes using the in vitro gas production technique. Tropical Animal Science Journal, 42(2), 128-136. https://doi.org/10.5398/tasj.2019.42.2.128
IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. (No. 106). World Soil Resources Reports FAO.
Lee, M. A. (2018). A global comparison of the nutritive values of forage plants grown in contrasting environments. Journal of Plant Research, 131(4), 641-654. https://doi.org/10.1007/s10265-018-1024-y
Lemaire, G., Tang, L., Bélanger, G., Zhu, Y., & Jeuffroy, M. H. (2021). Forward new paradigms for crop mineral nutrition and fertilization towards sustainable agriculture. European Journal of Agronomy, 125, e126248. https://doi.org/10.1016/j.eja.2021.126248
Lestari, P. G., Sinaga, A. O. Y., Marpaung, D. S. S., Nurhayu, W., & Oktaviani, I. (2024). Application of organic fertilizer for improving soybean production under acidic stress. Oil Crop Science, 9(1), 46-52. https://doi.org/10.1016/j.ocsci.2024.02.001
Marschner, H. (2011). Marschner’s mineral nutrition of higher plants. (3rd ed.). Academic Press.
Patterson, T., Klopfenstein, T.J., Milton, T., Brink, D.R. (2000). Evaluation of the 1996 beef cattle NRC model predictions of intake and gain for calves fed low or medium energy density diets. Nebraska Beef Cattle Reports, 76(1), 26-29. https://digitalcommons.unl.edu/animalscinbcr/314/
Piepho, H.P. (1999). Stability analysis using the SAS system. Agronomy Journal, 91, 154–160. https://doi.org/10.2134/agronj1999.00021962009100010024x
Ramos-Trejo, O. S., Canul-Solís, J. R., Alvarado-Canché, A. D. R., Castillo-Sánchez, L. E., Sandoval-Gío, J. J., Campos-Navarrete, M. J., & Casanova-Lugo, F. (2020). Growth, forage yield and quality of Morus alba L. and Gliricidia sepium (Jacq.) Walp. in mixed and pure fodder bank systems in Yucatan, México. Agroforestry Systems, 94(1), 151-157. https://doi.org/10.1007/s10457-019-00378-4
Reckling, M., Ahrends, H., Chen, T. W., Eugster, W., Hadasch, S., Knapp, S., Laidig, F., Linstädter, A., Macholdt, J., Piepho, H.-P., Schiffers, K., & Döring, T. F. (2021). Methods of yield stability analysis in long-term field experiments. A review. Agronomy for Sustainable Development, 41, 1-28. https://doi.org/10.1007/s13593-021-00681-4
Roy, M., Das, R., Debsarcar, A., Sen, P. K., & Mukherjee, J. (2016). Conversion of rural abattoir wastes to an organic fertilizer and its application in the field cultivation of tomato in India. Renewable Agriculture and Food Systems, 31(4), 350-360. https://doi.org/10.1017/S1742170515000289
Rusdy, M., Hatta, M., & Rinduwati, S. (2021). Effect of supplementing elephant grass with Gliricidia sepium, Lannea coromandelica and concentrate feed on Bali cattle performance. Livestock Research for Rural Development, 33(8).
Sales-Silva, T. B., Santos, M. V., Oliveira, O. F., Silva, P. H. F., Souza, E. J., Neto, D. E. S., & Cunha, M. V. (2023). The growth habits of tropical legumes affect the nutritive herbage value more than harvesting frequency. Crop and Pasture Science, 75(1), A-M. https://doi.org/10.1071/CP23109
Sankar, K. J. A., Vasudevan, V. N., Sunil, B., Latha, A., Irshad, A., Mathew, D. D., & Saifuddeen, S. M. (2022). Development of organic briquettes from slaughterhouse waste as nutrient source for plant growth. Waste and Biomass Valorization, 13, 599–608. https://doi.org/10.1007/s12649-021-01507-w
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Cunha, T. J. F. (2018). Sistema Brasileiro de Classificação de Solos. (5th eds) Embrapa.
SAS Institute Inc. (2014). SAS® OnDemand for academics: user’s guide (1st eds). SAS Institute Inc.
Shukla, G. K. (1972). Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29(2), 237–245. https://doi.org/10.1038/hdy.1972.87
Silva, I. A. G., Dubeux Jr, J. C., Santos, M. V. F., Mello, A. C. L., Cunha, M. V., Apolinário, V. X., & Freitas, E. V. (2021). Tree canopy management affects dynamics of herbaceous vegetation and soil moisture in silvopasture systems using arboreal legumes. Agronomy, 11(8), e1509. https://doi.org/10.3390/agronomy11081509
Silva, P. H. F., Medeiros, G. R.., Carvalho, C. B. M., Cavalcante, I. T. R., Santos, S. G. C. G., Neves, R. S., & Sales-Silva, T. B. (2024). The nutritional value of gliricidia in different fed forms: a systematic review. Ciência Rural, 54(11), e20230475. https://doi.org/10.1590/0103-8478cr20230475
Silva, S. F., Carneiro, M. D. S., Edvan, R. L., Pereira, E. S., Morais Neto, L. B., Pinto, A. P., Camilo, D. (2017). Agronomic characteristics and chemical composition of Gliricidia sepium grown under different residual heights in different seasons. Ciencia e Investigación Agraria: Revista Latinoamericana de Ciencias de la Agricultura, 44(1), 35-42.
Sniffen, C. J., O’connor, J. D., Van Soest, P. J., Fox, D. G., Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70(11), 3562-3577. https://doi.org/10.2527/1992.70113562x
Urra, J., Alkorta, I., & Garbisu, C. (2019). Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy, 9(9), 542. https://doi.org/10.3390/agronomy9090542
Valente, T. N. P., Silva Lima, E., Gomes, D. I., Santos, W. B. R., Castro Santos, S. (2016). Anatomical differences among forage with respect to nutrient availability for ruminants in the tropics: A review. African Journal of Agricultural Research, 11(18), 1585-1592. https://doi.org/10.5897/AJAR2016.10828
Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Vennila, C., Gunasekaran, S., & Sankaran, V. M. (2016). Effect of lopping interval on the growth and fodder yield of Gliricidia sepium. Agricultural Science Digest-A Research Journal, 36(3), 228-230.
Vides-Borrell, E., Garcia-Barrios, L. E., Álvarez-Solís, J. D., Nigh, R., Calderón, M. A., & Douterlungne, D. (2011). Survival and early growth of Gliricidia sepium fodder trees in subhumid tropical pasturelands: contrasting effects of NPK fertilizer salts vs. organic ammendments. Research Journal of Biology Science, 6, 468-474.
Wilson, J. R. E. (1997). Structural and anatomical traits of forages influencing their nutritive value for ruminants. International Symposium on Grazing Animal Production, 1, 173-208.
Wilson, J. R., & Mertens, D. R. (1995). Cell wall accessibility and cell structure limitations to microbial digestion of forage. Crop Science, 35(1), 251-259. https://doi.org/10.2135/cropsci1995.0011183X003500010046x
Authors
Copyright (c) 2025 Tropical Animal Science Journal

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.