Bovine Digesta as Organic Fertilizer in Gliricidia Fodder Banks: Agronomic Responses and Nutrient Composition

P. H. F. Silva(1) , G. R. Medeiros(2) , S. G. G. C. Santos(3) , I. T. R. Cavalcante(4) , R. S. Neves(5) , C. B. M. Carvalho(6) , J. H. S. Costa(7) , T. B. Sales-Silva(8) , J. P. S. Rigueira(9)
(1) Animal Science and Technology Department, State University of Montes Claros,
(2) Animal Production Center, Instituto Nacional do Semiárido (INSA),
(3) Department of Animal Science, Agricultural Science Center, State University of Maranhão,
(4) Animal Production Center, Instituto Nacional do Semiárido (INSA),
(5) Animal Production Center, Instituto Nacional do Semiárido (INSA),
(6) Animal Production Center, Instituto Nacional do Semiárido (INSA),
(7) Animal Production Center, Instituto Nacional do Semiárido (INSA),
(8) Department of Animal Science, Federal Rural University of Pernambuco,
(9) Animal Science and Technology Department, State University of Montes Claros

Abstract

Bovine digesta is an innovative by-product from slaughterhouses to fertilize forage crops, but applying excessive amounts can be inefficient in terms of dry matter yield (DMY) and nutritional characteristics. A two-year trial, which encompassed two rainy and two dry seasons, was conducted to assess the agronomic responses and nutrient composition of gliricidia fertilized with increasing levels of slaughterhouse bovine digesta (0, 1.25, 3.12, 6.25, 9.37, and 12.50 t/ha). Gliricidia DMY enhanced linearly from 8.0 to 15.9 t/ha/yr of DM as the bovine digesta dosage increased from 0 to 12.50 t/ha (p=0.0003). The DMY stability variance increased from 0 (σi2 = 0.10) to 12.50 t/ha (σi2 =14.09), so the bovine digesta reduced the DMY stability. Plant height also responded linearly to the fertilizer levels (p<0.0001). Consistent gains in leaf crude protein concentration (21.8, 22.5, 23.0, 23.7, 24.4, and 24.9 % DM for 0.00, 1.25, 3.12, 6.25, 9.37 and 12.50 t/ha, respectively) were observed because of the fertilizer levels (p<0.0001). As the gliricidia responds linearly to the bovine digesta fertilization regarding important agronomic and nutrient-composition traits, we recommend applying the top required dose (12.50 t/ha) to combine maximum forage yield and great roughage nutrient composition. It is not worth saving the organic fertilizer by using lower dosages. 

Full text article

Generated from XML file

References

Ahmed, M. A., Jusoh, S., Alimon, A. R., Ebrahimi, M., & Samsudin, A. A. (2018). Nutritive and anti-nutritive evaluation of Kleinhovia hospita, Leucaena leucocephala and Gliricidia sepium with respect to their effects on in vitro rumen fermentation and gas production. Tropical Animal Science Journal, 41(2), 128-136. https://doi.org/10.5398/tasj.2018.41.2.128

Alamu, E. O., Adesokan, M., Fawole, S., Maziya-Dixon, B., Mehreteab, T., & Chikoye, D. (2023). Gliricidia sepium (Jacq.) walp applications for enhancing soil fertility and crop nutritional qualities: a review. Forests, 14(3), 635. https://doi.org/10.3390/f14030635

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. D. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507.

Amole, T., Augustine, A., Balehegn, M., & Adesogoan, A. T. (2022). Livestock feed resources in the West African Sahel. Agronomy Journal, 114(1), 26-45. https://doi.org/10.1002/agj2.20955

Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1-9. https://doi.org/10.1016/j.scienta.2017.07.033

AOAC (2005). Official methods of analysis of AOAC International (18th eds). AOAC International.

Bayala, J., Ky-Dembele, C., Coe, R., Binam, J. N., Kalinganire, A., & Olivier, A. (2023). Frequency and period of pruning affect fodder production of Gliricidia sepium (Jacq.) Walp. and Pterocarpus erinaceus Poir. in the Sahel. Agroforestry Systems, 97(7), 1307-1321. https://doi.org/10.1007/s10457-022-00779-y

Bergstrand, K. J. (2022). Organic fertilizers in greenhouse production systems–a review. Scientia Horticulturae, 295, 110855. https://doi.org/10.1016/j.scienta.2021.110855

Bezerra Neto, E., Barreto, L. P. (2011). Análises químicas e bioquímicas em plantas. (1st ed.). UFRPE.

Bhunia, S., Bhowmik, A., Mallick, R., & Mukherjee, J. (2021a). Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: A review. Agronomy, 11(5), 823. https://doi.org/10.3390/agronomy11050823

Bhunia, S., Bhowmik, A., Mallick, R., Debsarcar, A., & Mukherjee, J. (2021b). Application of recycled slaughterhouse wastes as an organic fertilizer for successive cultivations of bell pepper and amaranth. Scientia Horticulturae, 280, 109927. https://doi.org/10.1016/j.scienta.2021.109927

Camargo, Â. P. D., & Camargo, M. B. P. D. (2000). Uma revisão analítica da evapotranspiração potencial. Bragantia, 59, 125-137.

Castro-Montoya, J. M., & Dickhoefer, U. (2020). The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review. Animal Feed Science and Technology, 269, 114641. https://doi.org/10.1016/j.anifeedsci.2020.114641

Cavalcanti, F. J. A. (2008). Fertilization recommendation for the Pernambuco State: 2nd approximation. (3rd ed.). Agronomic Institute from Pernambuco State.

Dhillon, R. S., Beniwal, R. S., Satpal, M. J., & Kumari, S. (2023). Tree fodder for nutritional security and sustainable feeding of livestock-A review. Forage Research, 49, 21-28.

Edvan, R. L., & Carneiro, M. S. S. (2011). Use of bovine digesta as organic fertilizer. Applied Research & Agrotechnology, 4(2), 211-225. https://doi.org/10.5777/paet.v4i2.1315

Fungo, B., Buyinza, J., Sekatuba, J., Nansereko, S., Ongodia, G., Kwaga, P., & Agaba, H. (2020). Forage biomass and soil aggregate carbon under fodder banks with contrasting management regimes. Agroforestry Systems, 94, 1023-1035. https://doi.org/10.1007/s10457-019-00473-6

Guadayo, G. F., Rayos, A. A., Merca, F. E., Tandang, A. G., Loresco, M. M., & Angeles, A. A. (2019). Prediction of in situ ruminal degradability of forages in buffaloes using the in vitro gas production technique. Tropical Animal Science Journal, 42(2), 128-136. https://doi.org/10.5398/tasj.2019.42.2.128

IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. (No. 106). World Soil Resources Reports FAO.

Lee, M. A. (2018). A global comparison of the nutritive values of forage plants grown in contrasting environments. Journal of Plant Research, 131(4), 641-654. https://doi.org/10.1007/s10265-018-1024-y

Lemaire, G., Tang, L., Bélanger, G., Zhu, Y., & Jeuffroy, M. H. (2021). Forward new paradigms for crop mineral nutrition and fertilization towards sustainable agriculture. European Journal of Agronomy, 125, e126248. https://doi.org/10.1016/j.eja.2021.126248

Lestari, P. G., Sinaga, A. O. Y., Marpaung, D. S. S., Nurhayu, W., & Oktaviani, I. (2024). Application of organic fertilizer for improving soybean production under acidic stress. Oil Crop Science, 9(1), 46-52. https://doi.org/10.1016/j.ocsci.2024.02.001

Marschner, H. (2011). Marschner’s mineral nutrition of higher plants. (3rd ed.). Academic Press.

Patterson, T., Klopfenstein, T.J., Milton, T., Brink, D.R. (2000). Evaluation of the 1996 beef cattle NRC model predictions of intake and gain for calves fed low or medium energy density diets. Nebraska Beef Cattle Reports, 76(1), 26-29. https://digitalcommons.unl.edu/animalscinbcr/314/

Piepho, H.P. (1999). Stability analysis using the SAS system. Agronomy Journal, 91, 154–160. https://doi.org/10.2134/agronj1999.00021962009100010024x

Ramos-Trejo, O. S., Canul-Solís, J. R., Alvarado-Canché, A. D. R., Castillo-Sánchez, L. E., Sandoval-Gío, J. J., Campos-Navarrete, M. J., & Casanova-Lugo, F. (2020). Growth, forage yield and quality of Morus alba L. and Gliricidia sepium (Jacq.) Walp. in mixed and pure fodder bank systems in Yucatan, México. Agroforestry Systems, 94(1), 151-157. https://doi.org/10.1007/s10457-019-00378-4

Reckling, M., Ahrends, H., Chen, T. W., Eugster, W., Hadasch, S., Knapp, S., Laidig, F., Linstädter, A., Macholdt, J., Piepho, H.-P., Schiffers, K., & Döring, T. F. (2021). Methods of yield stability analysis in long-term field experiments. A review. Agronomy for Sustainable Development, 41, 1-28. https://doi.org/10.1007/s13593-021-00681-4

Roy, M., Das, R., Debsarcar, A., Sen, P. K., & Mukherjee, J. (2016). Conversion of rural abattoir wastes to an organic fertilizer and its application in the field cultivation of tomato in India. Renewable Agriculture and Food Systems, 31(4), 350-360. https://doi.org/10.1017/S1742170515000289

Rusdy, M., Hatta, M., & Rinduwati, S. (2021). Effect of supplementing elephant grass with Gliricidia sepium, Lannea coromandelica and concentrate feed on Bali cattle performance. Livestock Research for Rural Development, 33(8).

Sales-Silva, T. B., Santos, M. V., Oliveira, O. F., Silva, P. H. F., Souza, E. J., Neto, D. E. S., & Cunha, M. V. (2023). The growth habits of tropical legumes affect the nutritive herbage value more than harvesting frequency. Crop and Pasture Science, 75(1), A-M. https://doi.org/10.1071/CP23109

Sankar, K. J. A., Vasudevan, V. N., Sunil, B., Latha, A., Irshad, A., Mathew, D. D., & Saifuddeen, S. M. (2022). Development of organic briquettes from slaughterhouse waste as nutrient source for plant growth. Waste and Biomass Valorization, 13, 599–608. https://doi.org/10.1007/s12649-021-01507-w

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Cunha, T. J. F. (2018). Sistema Brasileiro de Classificação de Solos. (5th eds) Embrapa.

SAS Institute Inc. (2014). SAS® OnDemand for academics: user’s guide (1st eds). SAS Institute Inc.

Shukla, G. K. (1972). Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29(2), 237–245. https://doi.org/10.1038/hdy.1972.87

Silva, I. A. G., Dubeux Jr, J. C., Santos, M. V. F., Mello, A. C. L., Cunha, M. V., Apolinário, V. X., & Freitas, E. V. (2021). Tree canopy management affects dynamics of herbaceous vegetation and soil moisture in silvopasture systems using arboreal legumes. Agronomy, 11(8), e1509. https://doi.org/10.3390/agronomy11081509

Silva, P. H. F., Medeiros, G. R.., Carvalho, C. B. M., Cavalcante, I. T. R., Santos, S. G. C. G., Neves, R. S., & Sales-Silva, T. B. (2024). The nutritional value of gliricidia in different fed forms: a systematic review. Ciência Rural, 54(11), e20230475. https://doi.org/10.1590/0103-8478cr20230475

Silva, S. F., Carneiro, M. D. S., Edvan, R. L., Pereira, E. S., Morais Neto, L. B., Pinto, A. P., Camilo, D. (2017). Agronomic characteristics and chemical composition of Gliricidia sepium grown under different residual heights in different seasons. Ciencia e Investigación Agraria: Revista Latinoamericana de Ciencias de la Agricultura, 44(1), 35-42.

Sniffen, C. J., O’connor, J. D., Van Soest, P. J., Fox, D. G., Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science, 70(11), 3562-3577. https://doi.org/10.2527/1992.70113562x

Urra, J., Alkorta, I., & Garbisu, C. (2019). Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy, 9(9), 542. https://doi.org/10.3390/agronomy9090542

Valente, T. N. P., Silva Lima, E., Gomes, D. I., Santos, W. B. R., Castro Santos, S. (2016). Anatomical differences among forage with respect to nutrient availability for ruminants in the tropics: A review. African Journal of Agricultural Research, 11(18), 1585-1592. https://doi.org/10.5897/AJAR2016.10828

Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Vennila, C., Gunasekaran, S., & Sankaran, V. M. (2016). Effect of lopping interval on the growth and fodder yield of Gliricidia sepium. Agricultural Science Digest-A Research Journal, 36(3), 228-230.

Vides-Borrell, E., Garcia-Barrios, L. E., Álvarez-Solís, J. D., Nigh, R., Calderón, M. A., & Douterlungne, D. (2011). Survival and early growth of Gliricidia sepium fodder trees in subhumid tropical pasturelands: contrasting effects of NPK fertilizer salts vs. organic ammendments. Research Journal of Biology Science, 6, 468-474.

Wilson, J. R. E. (1997). Structural and anatomical traits of forages influencing their nutritive value for ruminants. International Symposium on Grazing Animal Production, 1, 173-208.

Wilson, J. R., & Mertens, D. R. (1995). Cell wall accessibility and cell structure limitations to microbial digestion of forage. Crop Science, 35(1), 251-259. https://doi.org/10.2135/cropsci1995.0011183X003500010046x

Authors

P. H. F. Silva
pehenrique1709@gmail.com (Primary Contact)
G. R. Medeiros
S. G. G. C. Santos
I. T. R. Cavalcante
R. S. Neves
C. B. M. Carvalho
J. H. S. Costa
T. B. Sales-Silva
J. P. S. Rigueira
Silva, P. H. F., Medeiros, G. R., Santos, S. G. G. C., Cavalcante, I. T. R., Neves, R. S., Carvalho, C. B. M., Costa, J. H. S., Sales-Silva, T. B., & Rigueira, J. P. S. (2025). Bovine Digesta as Organic Fertilizer in Gliricidia Fodder Banks: Agronomic Responses and Nutrient Composition. Tropical Animal Science Journal, 48(5), 429-439. https://doi.org/10.5398/tasj.2025.48.5.429

Article Details

How to Cite

Silva, P. H. F., Medeiros, G. R., Santos, S. G. G. C., Cavalcante, I. T. R., Neves, R. S., Carvalho, C. B. M., Costa, J. H. S., Sales-Silva, T. B., & Rigueira, J. P. S. (2025). Bovine Digesta as Organic Fertilizer in Gliricidia Fodder Banks: Agronomic Responses and Nutrient Composition. Tropical Animal Science Journal, 48(5), 429-439. https://doi.org/10.5398/tasj.2025.48.5.429