In Vitro and In Situ Evaluation of Fermented High Moisture Corn and Ear Corn as Alternative Feedstuffs for Feedlot Calves
Abstract
High-moisture corn products offer potential advantages in intensive cattle feeding systems by providing high-energy feedstuffs while allowing earlier harvest. This study evaluated the nutritional value and fermentation characteristics of fermented high-moisture grain corn (HMG) and high-moisture ear corn (HME) compared to conventional corn grain (CG) and corn silage (CS) through in vitro and in situ techniques. Six samples from each corn product were collected from commercial farms, pooled, and analyzed in five replicates. Chemical analysis revealed that HME contained higher neutral detergent fiber (19.0% vs. 4.25%) but lower starch (60.95% vs. 66.75%) and crude protein (7.27% vs. 8.32%) compared to HMG (p<0.01). While accumulated gas production was similar among HMG, HME, and CG, all significantly exceeded CS values (p<0.01). HMG demonstrated the highest gas production rate and metabolizable energy content (12.2 MJ/kg), significantly higher than HME (10.1 MJ/kg). In vitro organic matter digestibility was highest in HMG (751.5 g/kg), while HME showed intermediate values (680.2 g/kg). The in situ evaluation revealed higher effective rumen degradability for HMG compared to HME (p<0.01). Ammonia nitrogen concentrations remained above microbial requirements across all treatments, with HMG and HME showing similar patterns. Volatile fatty acid profiles indicated enhanced fiber degradability in high-moisture products compared to CG. In conclusion, fermented high-moisture corn products demonstrated distinct nutritional characteristics compared to conventional corn grain, with HMG showing higher energy content and digestibility values, while HME exhibited increased fiber content. These findings provide quantitative data on the nutritional value of fermented high-moisture corn alternatives for feedlot cattle feeding formulations.
Full text article
References
Abaş, I., Özpinar, H., Kutay, H., Kahraman, R., & Eseceli, H. (2005). Determination of the metabolizable energy (ME) and net energy lactation (NEL) contents of some feeds in the Marmara region by in vitro gas technique. Turkish Journal of Veterinary Animal Sciences, 29, 751-757.
Akins, M. S., & Shaver, R. D. (2014). Effect of corn snaplage on lactation performance by dairy cows. The Professional Animal Scientist, 30, 86-92. https://doi.org/10.15232/S1080-7446(15)30088-7
AOAC. (1990). Official methods of analysis. Association of Official Analytical Chemists (AOAC).
ARC (Agricultural Research Council Commonwealth Agricultural Bureaux). (1980). The nutrient requirements of ruminant livestock: technical review. Agricultural Research Council.
Cattani, M., Tagliapietra, F., Maccarana, L., Hansen, H. H., Bailoni, L., & Schiavon, S. (2014). Technical note: In vitro total gas and methane production measurements from closed or vented rumen batch culture systems. Journal of Dairy Science, 97, 1736-1741. https://doi.org/10.3168/jds.2013-7462
Cueva, S. F., Harper, M., Roth, G. W., Wells, H., Canale, C., Gallo, A., Masoero, F., & Hristov, A. N. (2023). Effects of ensiling time on corn silage starch ruminal degradability evaluated in situ or in vitro. Journal of Dairy Science, 106, 3961-3974. https://doi.org/10.3168/jds.2022-22817
Dhakal, R., Neves, A. L. A., Sapkota, R., Khanal, P., Ellegaard-Jensen, L., Winding, A., & Hansen, H. H. (2024). Temporal dynamics of volatile fatty acids profile, methane production, and prokaryotic community in an in vitro rumen fermentation system fed with maize silage. Frontiers in Microbiology, 15, 1271599. https://doi.org/10.3389/fmicb.2024.1271599
Elmhadi, M. E., Ali, D. K., Khogali, M. K., & Wang, H. (2022). Subacute ruminal acidosis in dairy herds: Microbiological and nutritional causes, consequences, and prevention strategies. Animal Nutrition, 10, 148-155. https://doi.org/10.1016/j.aninu.2021.12.008
Ferraretto, L. F., Crump, P. M., & Shaver, R. D. (2013). Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis. Journal of Dairy Science, 96, 533-550. https://doi.org/10.3168/jds.2012-5932
Freitas, T. B., Felix, T. L., Shriver, W., Fluharty, F. L., & Relling, A. E. (2020). Effect of corn processing on growth performance, carcass characteristics, and plasma glucose-dependent insulinotropic polypeptide and metabolite concentrations in feedlot cattle. Translational Animal Science, 4, 822-830. https://doi.org/10.1093/tas/txaa009
García-Chávez, I., Meraz-Romero, E., Castelán-Ortega, O., Zaragoza-Esparza, J., Osorio Avalos, J., Robles Jiménez, L. E., & González-Ronquillo, M. (2022). Corn silage, a systematic review of the quality and yield in different regions around the world. Ciencia y Tecnología Agropecuaria, 23, e2547. https://doi.org/10.21930/rcta.vol23_num3_art:2547
Lardy, G., & Anderson, V. L. (2010). Harvesting, storing and feeding high-moisture corn. North Dakota State University Ext. Serv. Publ. AS.
Li, J., Li, Z., Shang, S., Zhao, X., Zhang, W., Zhang, X., Bai, J., Yang, Z., & Guo, K. (2023). Effect of additives and moisture on the fermentation quality and bacterial community of high moisture ear corn. Frontiers in Microbiology, 14, 1251946. https://doi.org/10.3389/fmicb.2023.1251946
Maccarana, L., Cattani, M., Tagliapietra, F., Schiavon, S., Bailoni, L., & Mantovani, R. (2016). Methodological factors affecting gas and methane production during in vitro rumen fermentation evaluated by meta-analysis approach. Journal of Animal Science and Biotechnology, 7, 35. https://doi.org/10.1186/s40104-016-0094-8
McDonald, I. (1981). A revised model for the estimation of protein degradability in the rumen. The Journal of Agricultural Science, 96, 251-252. https://doi.org/10.1017/S0021859600032081
Menke, K., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and. Animal Research and Development, 28, 7-55.
Moharrery, A., Larsen, M., & Weisbjerg, M. R. (2014). Starch digestion in the rumen, small intestine, and hind gut of dairy cows – A meta-analysis. Animal Feed Science and Technology, 192, 1-14. https://doi.org/10.1016/j.anifeedsci.2014.03.001
Muck, R. E., Nadeau, E. M. G., McAllister, T. A., Contreras-Govea, F. E., Santos, M. C., & Kung, L. (2018). Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 101, 3980-4000. https://doi.org/10.3168/jds.2017-13839
Muqier, X., Eknæs, M., Prestløkken, E., Jensen, R. B., Eikanger, K. S., Karlengen, I. J., Trøan, G., Vhile, S. G., & Kidane, A. (2023). In vitro rumen fermentation characteristics, estimated utilizable crude protein and metabolizable energy values of grass silages, concentrate feeds and their mixtures. Animals, 13, 2695. https://doi.org/10.3390/ani13172695
Ørskov, E. R., & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 92, 499-503. https://doi.org/10.1017/S0021859600063048
Petzel, E. A., Acharya, S., Zeltwanger, J. M., Bailey, E. A., & Brake, D. W. (2021). Effects of corn processing and cattle size on total tract digestion and energy and nitrogen balance. Journal of Animal Science, 99, skab349. https://doi.org/10.1093/jas/skab349
Samuelson, K. L., Hubbert, M. E., Galyean, M. L., & Löest, C. A. (2016). Nutritional recommendations of feedlot consulting nutritionists: The 2015 New Mexico State and Texas Tech University survey. Journal of Animal Science, 94, 2648-2663. https://doi.org/10.2527/jas.2016-0282
Seradj, A. R., Morazan, H., Fondevila, M., Liang, J. B., De la Fuente, G., & Balcells, J. (2019). In vitro and in situ degradation characteristics and rumen fermentation products of Moringa oleifera harvested at three different ages. Tropical Animal Science Journal, 42(1), 39-45. https://doi.org/10.5398/tasj.2019.42.1.39
Shang, S., Li, J., Zhang, W., Zhang, X., Bai, J., Yang, Z., Wang, X., Fortina, R., Gasco, L., & Guo, K. (2024). Impact of high-moisture ear corn on antioxidant capacity, immunity, rumen fermentation, and microbial diversity in pluriparous dairy cows. Fermentation, 10, 44. https://doi.org/10.3390/fermentation10010044
Tunkala, B. Z., DiGiacomo, K., Alvarez Hess, P. S., Gardiner, C. P., Suleria, H., Leury, B. J., & Dunshea, F. R. (2023). Evaluation of legumes for fermentability and protein fractions using in vitro rumen fermentation. Animal Feed Science and Technology, 305, 115777. https://doi.org/10.1016/j.anifeedsci.2023.115777
Umucalilar, H. D., Coşkun, B., & Gülşen, N. (2002). In situ rumen degradation and in vitro gas production of some selected grains from Turkey. Journal of Animal Physiology and Animal Nutrition, 86, 288-297. https://doi.org/10.1046/j.1439-0396.2002.00381.x
Ungerfeld, E. M. (2020). Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Frontiers in Microbiology, 11, 589. https://doi.org/10.3389/fmicb.2020.00589
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Wang, P., Zhao, S., Nan, X., Jin, D., & Wang, J. (2018). Influence of hydrolysis rate of urea on ruminal bacterial diversity level and cellulolytic bacteria abundance in vitro. PeerJ, 6, e5475. https://doi.org/10.7717/peerj.5475
Weatherburn, M. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry, 39, 971-974. https://doi.org/10.1021/ac60252a045
Zhu, J., Ren, A., Jiao, J., Shen, W., Yang, L., Zhou, C., & Tan, Z. (2022). Effects of non-protein nitrogen sources on in vitro rumen fermentation characteristics and microbial diversity. Frontiers in Animal Science, 3, 891898. https://doi.org/10.3389/fanim.2022.891898
Authors
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.