Sperm Quality, Kinematics, Membrane Integrity, and DNA Fragmentation of Frozen Sexed Semen in Holstein-Friesian Bulls

F. Safa(1) , A. P. A. Yekti(2) , P. Utami(3) , H. A. Syah(4) , N. Febrianto(5) , A. Rachmawati(6) , A. Yuswati(7) , A. Amaliya(8) , D. Sulistyowati(9) , T. Susilawati(10)
(1) Department of Animal Science, Universitas Brawijaya,
(2) Department of Animal Science, Universitas Brawijaya,
(3) Department of Animal Science, Universitas Brawijaya,
(4) Department of Animal Science, Universitas Brawijaya,
(5) Department of Animal Science, Universitas Brawijaya,
(6) Department of Animal Science, Universitas Brawijaya,
(7) Department of Animal Science, Universitas Brawijaya,
(8) Singosari Artificial Insemination Center,
(9) Singosari Artificial Insemination Center,
(10) Department of Animal Science, Universitas Brawijaya

Abstract

Percoll density gradient centrifugation (PDGC) is a widely used method for sperm separation in Indonesia. This study evaluated sperm quality, membrane integrity, acrosome damage, and DNA fragmentation after PDGC-based sperm sexing and cryopreservation. This research was conducted as a laboratory experiment with six treatment groups: fresh semen (T1), post-sexing X-chromosome-bearing sperm (T2), post-sexing Y-chromosome-bearing sperm (T3), post-thawing unsexed semen (T4), post-thawing X-chromosome-bearing sperm (T5), and post-thawing Y-chromosome-bearing sperm (T6). The observed variables included individual motility (IM), viability, concentration, abnormality, total motile sperm (TMS), intact acrosome cap (IAC), membrane integrity (MI), DNA fragmentation, and sperm kinetic variables assessed using computer-assisted sperm analysis (CASA). The results showed that PDGC sexing significantly reduced IM, concentration, TMS, viability, MI, and IAC. Furthermore, the freezing of both unsexed and sexed semen further decreased IM, concentration, TMS, viability, MI, and IAC while increasing sperm abnormalities. DNA fragmentation increased post-sexing and freezing in unsexed semen, indicating potential DNA damage from these processes. Kinetic variable assessment using CASA showed that PDGC maintained sperm motility characteristics, whereas freezing led to a significant decline in sperm kinetics. In conclusion, PDGC is a viable method for sperm sexing in cattle, as it preserves sperm quality, membrane integrity, acrosome integrity, DNA integrity, and motility characteristics while being compatible with semen cryopreservation. These findings confirm that PDGC-processed semen is suitable for artificial insemination (AI).

Full text article

Generated from XML file

References

Afriani, T., Udin, Z., Jaswandi, Wahyudi, D., & Asyraf, M. (2024). Testing motility parameters of post-thawing Pesisir bulls (Bos indicus) semen with and without sexing. International Journal of Veterinary Science, 13(2), 453-457. https://doi.org/10.47278/journal.ijvs/2023.123

Agarwal, A., Majzoub, A., Baskaran, S., Selvam, M. K. P., Cho, C. L., Henkel, R., Finelli, R., Leisegang, K., Sengupta, P., Barbarosie, C., Parekh, N., Alves, M. G., Ko, E., Arafa, M., Tadros, N., Ramasamy, R., Kavoussi, P., Ambar, R., Kuchakulla, M., Robert, K. A., Iovine, C., Durairajanayagam, D., Jindal, S., & Shah, R. (2020). Sperm DNA fragmentation: A new guideline for clinicians. World Journal of Men’s Health, 38(4), 412–471. https://doi.org/10.1201/9780429485763

Akhtar, I., Kim, Y., Umehara, T., Kanno, C., Sasaki, M., Marey, M. A., Yousef, M. S., Haneda, S., Shimada, M., & Miyamoto, A. (2023). Activation of sperm Toll-like receptor 2 induces hyperactivation to enhance the penetration to mucus and uterine glands: a trigger for the uterine inflammatory cascade in cattle. Front. Immunol., 14:1319572, 1-14. https://doi.org/10.3389/fimmu.2023.1319572

Aldini, S. A., Isnaini, N., Yekti, A. P. A., & Susilawati, T. (2022). Study of the quality and integrity of sperm acrosome caps in frozen sexing semen Holstein-Friesian cattle. Jurnal Ilmu-Ilmu Peternakan, 32(2), 233–240. https://doi.org/10.21776/ub.jiip.2022.032.02.09

Ali, A. H., Ajina, T., Ben Ali, M., & Mehdi, M. (2022). Efficacy of density gradient centrifugation technique (DGC) in enhancing sperm cell DNA quality for assisted reproductive technique. Middle East Fertility Society Journal, 27, 22. http://dx.doi.org/10.1016/j.theriogenology.2008.04.049

Alm-Kristiansen, A. H. (2023). Motility subpopulations with distinct motility characteristics using swim-up-selected sperm cells from Norwegian Red bulls: Effects of freezing–thawing and between-bull variation. Biology, 12, 1086. https://doi.org/10.3390/biology12081086

Arias, M. E., Andara, K., Briones, E., & Felmer, R. (2017). Bovine sperm separation by Swim-up and density gradients (Percoll and BoviPure): Effect on sperm quality, function, and gene expression. Reproductive Biology, 17(2), 126–132. https://doi.org/10.21776/ub.jiip.2022.032.02.09

Arvioges, A., Anwar, P., & Jiyanto. (2021). Efektivitas suhu thawing terhadap keadaan membran plasma utuh (MPU) dan tudung akrosom utuh (TAU) sperm sapi Bali. Jurnal Green Swarnadwipa, 10(2), 342–350.

Ax, R. L., Dally, M., Didion, B. A., Lenz, R. W., Love, C. C., Varner, D. D., Hafez, B., & Bellin, M. E. (2000). Semen evaluation. In Reproduction in Farm Animals (pp. 365-366). https://doi.org/10.1002/9781119265306.ch25

Baity, A. N., Maghfiroh, N. A., Fitriana, S. B., Prihantoko, K. D., Maharani, D., & Widayati, D. T. (2024). Effect of storage periods on DNA fragmentation of post-thawed Bali bull sperm. Advances in Animal and Veterinary Sciences, 12(8), 1456-1464. https://doi.org/10.17582/journal.aavs/2024/12.8.1456.1464

Baskaran, S., Cho, C. L., & Agarwal, A. (2019). Role of Sperm DNA Damage in Male Infertility Assessment. In B. Rizk, A. Agarwal, & E. Sabanegh Jr. (Eds.), Male infertility in reproductive medicine: diagnosis and management (1st ed.). CRC Press. https://doi.org/10.1201/9780429485763

Bernecic, N. C., Donnellan, E., O’Callaghan, E., Kupisiewicz, K., O’Meara, C., Weldon, K., Lonergan, P., Kenny, D. A., & Fair, S. (2021). Comprehensive functional analysis reveals that acrosome integrity and viability are key variables distinguishing artificial insemination bulls of varying fertility. Journal of Dairy Science, 104, 11226–11241. https://doi.org/10.21776/ub.jiip.2022.032.02.09

Bollwein, H., & Malama, E. (2023). Review: evaluation of bull fertility. functional and molecular approaches. Animal, 17, 100795. https://doi.org/10.17582/journal.aavs/2024/12.8.1456.1464

Brum, A. M., Sabeur, K., & Ball, B. A. (2008). Apoptotic-like changes in equine sperm separated by density-gradient centrifugation or after cryopreservation. Theriogenology, 69(2), 1041–1055. https://doi.org/10.1016/j.theriogenology.2008.01.014

Bustani, G. S., & Baiee, F. H. (2021). Semen extenders: An evaluative overview of preservative mechanisms of semen and semen extenders. Veterinary World, 14(5), 1220-1233. https://doi.org/10.17582/journal.aavs/2024/12.8.1456.1464

Chakraborty, S., & Saha, S. (2022). Understanding sperm motility mechanisms and the implication of sperm surface molecules in promoting motility. Middle East Fertility Society Journal, 27, 4. https://doi.org/10.1186/s43043-022-00094-7

Chen, L., Zhang, K., Cui, X., & A. Jalilvand. 2024. The effect of temperature shock on enhancing sperm motility: A new insight into molecular and cellular mechanisms through current procedures. Medical Hypotheses, 188, 111377. https://doi.org/10.1016/j.mehy.2024.111377

De Jarnette, J. M., Harstine, B. R., McDonald, K., & Marshall, C. E. (2021). Commercial application of flow cytometry for evaluating bull sperm. Animal Reproduction Science. https://doi.org/10.1016/j.anireprosci.2021.106838

Demir, K., Atalla, H., Yağcıoğlu, S., Arıcı, R., Ersoy, N., Eser, A., Coşkun, N., Armutak, E. I., Üvez, A., Evicen, M., Ak, K., Birler, S., & Pabuccuoğlu, S. (2019). The effect of swim up and Percoll gradient separation on ram sperm parameters, DNA integrity, and embryo development. Revue Méd. Vét., 170(4-6), 87-94. https://www.researchgate.net/publication/332566778

Ducha, P. (2012). Ultrastructure and fertilizing ability of Limousin bull sperm after storage in Cep-2 extender with and without egg yolk. Pakistan Journal of Biological Sciences, 15(11), 979–985. https://doi.org/10.3923/pjbs.2012.979.985

El-Regalaty, H. A. M. 2017. Effects of cryopreservation of buffalo and bovine spermatozoa on sperm DNA damage and early embryonic development. Journal of Animal and Poultry Production, 8(7), 167-172. https://doi.org/10.21608/jappmu.2017.45843

Evenson, D. P. (2016). The sperm chromatin structure assay (SCSA®) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Animal Reproduction Science, 169, 56–75. https://doi.org/10.1016/j.anireprosci.2016.01.017

Garner, D. L., & Hafez, E. S. E. (2000). Sperm and seminal plasma. In Hafez, B., & Hafez, E. S. E. (Eds.), Reproduction in farm animals (7th Ed.) (pp. 96-109). Lippincott Williams & Wilkins. https://doi.org/10.1002/9781119265306.ch7

Gillan, L., Kroetsch, T., Maxwell, W. C. M., & Evans, G. (2008). Assessment of in vitro sperm characteristics in relation to fertility in dairy bulls. Animal Reproduction Science, 103(1-2), 201–214. https://doi.org/10.1016/j.anireprosci.2006.12.010

Gosálvez, J., Ramirez, M. A., López-Fernández, C., Crespo, F., Evans, K. M., Kjelland, M. E., & Moreno, J. F. (2011). Sex-sorted bovine sperm and DNA damage: II. Dynamic features. Theriogenology, 75(2), 206–211. https://doi.org/10.1016/j.theriogenology.2010.09.011

Gürler, H., Malama, E., Heppelmann, M., Calisici, O., Leiding, C., Kastelic, J. P., & Bollwein, H. (2016). Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species and DNA damage of bovine sperm. Theriogenology, 85(1), 108–117. https://doi.org/10.1016/j.theriogenology.2016.02.007

Handarini, R., Baharun, A., Rahmi, A., Sudrajat, D., Anggraeni, A., Nurcholis, N., Iskandar, H., Maulana, T., Kaiin, E. M., Anwar, S., & Said, S. (2024). Correlation of sperm motility, acrosome integrity, protamine deficiency, and DNA fragmentation in proven and unproven Holstein-Friesian bulls. Journal of Advanced Veterinary and Animal Research, 11(3), 796–802. https://doi.org/10.1111/j.1365-2605.2006.00723.x

Harstine, B. R., Utt, M. D., & DeJarnette, J. M. (2018). Review: Integrating a semen quality control program and sire fertility at a large artificial insemination organization. Animal, 12(S1), s63–s74. https://doi.org/10.1017/s1751731118000319

Indonesian National Standard. (2024). SNI Frozen Semen- Part 1: Bulls. RSNI3 4869-1:2024. BSN. https://www.bsn.go.id/uploads/attachment/rsni3_4869-1-2024.pdf

Jaroudi, S., & SenGupta, S. (2007). DNA repair in mammalian embryos. Mutation Research, 635(1), 53–77. https://doi.org/10.1016/j.mrrev.2006.09.002

Karoui, S., Díaz, C., González-Marín, C., Amenabar, M. E., Serrano, M., Ugarte, E., Gosálvez, J., Roy, R., López-Fernández, C., & Carabaño, M. J. (2012). Is sperm DNA fragmentation a good marker for field AI bull fertility? Journal of Animal Science, 90(8), 2437–2449. https://doi.org/10.2527/jas.2011-4492

Keskin, İ., & Karabulut, S. (2017). Effects of density gradient sperm preparation on semen parameters and acrosomal status. Haydarpaşa Numune Medical Journal, 57(2), 73-77. https://doi.org/10.14744/hnhj.2017.08208

Kathiravan, P., Kalatharan, J., Edwin, M. J., & Veerapandian, C. (2008). Computer automated motion analysis of crossbred bull spermatozoa and its relationship with in vitro fertility in zona-free hamster oocytes. Animal Reproduction Science, 104(1), 9–17. https://doi.org/10.1016/j.anireprosci.2007.01.002

Khalil, W. A., El-Harairy, M. A., Zeidan, A. E. B., Hassan, M. A. E., & Mohey-Elsaeed, O. (2018). Evaluation of bull sperm during and after cryopreservation: Structural and ultrastructural insights. International Journal of Veterinary Science and Medicine, S49-S56. https://doi.org/10.1016/j.ijvsm.2017.11.001

Khan, I. M., Cao, Z., Liu, H., Khan, A., Rahman, S. U., Khan, M. Z., Sathanawongs, A., & Zhang, Y. (2021). Impact of cryopreservation on sperm freeze-thawed traits and relevance OMICS to assess sperm cryo-tolerance in farm animals. Frontiers in Veterinary Science, 8, 609180. https://doi.org/10.3389/fvets.2021.609180

Khan, M. Z., Chen, W., Naz, S., Liu, X., Liang, H., Chen, Y., Kou, X., Liu, Y., Ashraf, I., Han, Y., Peng, Y., Wang, C., & Zahoor, M. (2024). Determinant genetic markers of semen quality in livestock. Frontiers in Endocrinology, 15, 1456305. https://doi.org/10.3389/fendo.2024.1456305

Kumar, A., Prasad, J. K., Srivastava, N., & Ghosh, S. K. (2019). Strategies to minimize various stress-related freeze–thaw damages during conventional cryopreservation of mammalian sperm. Biopreservation and Biobanking, 17(6), 603–612. https://doi.org/10.1089/bio.2019.0037

Kumaresan, A., Johannisson, A., Al-Essawe, E. M., & Morrell, J. M. (2017). Sperm viability, reactive oxygen species, and DNA fragmentation index combined can discriminate between above- and below-average fertility bulls. Journal of Dairy Science, 100(7), 5824-5836. https://doi.org/10.3168/jds.2016-12484

Lacalle, E., Núñez, A., Fernández-Alegre, E., Crespo-Félez, I., Domínguez, J. C., Alonso, M. E., González-Urdiales, R., & Martínez-Pastor, F. (2021). Cold-shock test is a practical method for selecting boar ejaculates yielding appropriate seminal plasma for post-thawing supplementation. Animals, 11(3), 871. https://doi.org/10.3390/ani11030871

Larasati, M. D., Lestari, S. W., Hestiantoro, A., & Pangestu, M. (2022). Can cryoprotectant’s modification in spermatozoa cryopreservation be an alternative to improve embryo quality? A Review. International Journal of Technology, 13(8), 1755-1767. https://doi.org/10.14716/ijtech.v13i8.6129

Le, M. T., Nguyen, T. T. T., Nguyen, T. T., Nguyen, T. V., Nguyen, T. A. T., Nguyen, Q. H. V., Cao, T. N. (2019). Does conventional freezing affect sperm DNA fragmentation? Clinical and Experimental Reproductive Medicine, 46(2), 67-75. https://doi.org/10.3168/jds.2016-12484

Macente, B. I., Apparicio, M., Mansano, C. F. M., Tavares, M. R., Fonseca-Alves, C. E., Sousa, B. P., Bertolo, P. H. L., Vasconcelos, R. O., Teixeira, E. S., & Toniollo, G. H. (2019). Effect of cryopreservation on sperm DNA fragmentation and apoptosis rates in the testicular tissue of domestic cats. Animal Reproduction Science, 211, 106224. https://doi.org/10.1016/j.anireprosci.2019.106224

Mahendra, M. (2016). Evaluation of frozen-thawed bull semen: A review. Journal of Animal Reproduction and Biotechnology, 31(2), 97–105.

Mahfud, A., Isnaini, N., Yekti, A. P. A., Kuswati, & Susilawati, T. (2019). Kualitas sperm post thawing semen beku sperma Y hasil sexing pada sapi Limousin. TERNAK TROPIKA Journal of Tropical Animal Production, 20(1), 1-7. https://doi.org/10.21776/ub.jtapro.2019.020.01.1

Malvezzi, H., Sharma, R., Agarwal, A., Abuzenadah, A. M., & Abu-Elmagd, M. (2014). Sperm quality after density gradient centrifugation with three commercially available media: a controlled trial. Reproductive Biology and Endocrinology, 12, 121. https://doi.org/10.21776/ub.jtapro.2019.020.01.1

Martin, G., Sabido, O., Durand, P., & Levy, R. (2004). Cryopreservation induces an apoptosis-like mechanism in bull sperm. Biology of Reproduction, 71, 1105-1113. https://doi.org/10.1095/biolreprod.103.024281

Missio, D., Folchini, N. P., Leivas, F. G., Pavin, C. I. U. M., Pinto, H. F., Cibin, F. W. S., & Brum, D. S. (2018). Reduction in Percoll volume increases recovery rate of sex-sorted semen of bulls without affecting sperm quality and early embryonic development. Animal Reproduction Science, 192, 146–153. https://doi.org/10.1016/j.anireprosci.2018.03.002

Morrell, J. M., Valeanu, A. S., Lundeheim, N., & Johannisson, A. (2018). Sperm quality in frozen beef and dairy bull semen. Acta Veterinaria Scandinavica, 60, 41. https://doi.org/10.1016/j.anireprosci.2018.03.002

Montero, M. N., Alvarez, M., Riesco, M. F., Soriano-Úbeda, C., Montes-Garrido, R., Palacin-Martinez, C., de Paz, P., Anel, L., & Anel-Lopez, L. (2024). Seminal plasma removal for medium-term preservation of ram sperm at 5°C. BMC Veterinary Research, 20, 360. https://doi.org/10.1002/j.1939-4640.2000.tb02116.x

Nguyen, S. T., Edo, A., Nagahara, M., Otoi, T., Taniguchi, M., & Takagi, M. (2024). Selection of sperm with high motility and quality from bovine frozen-thawed semen using the centrifuge-free device. Animal Reproduction Science, 260, 107386. https://doi.org/10.1002/j.1939-4640.2000.tb02116.x

Nixon, B., Cafe, S. L., Bromfield, E. G., De Luliis, G. N., & Dun, M. D. (2021). Capacitation and acrosome reaction: histochemical techniques to determine acrosome reaction. In A. Agarwal, R. Henkel, & A. Majzoub (Eds.), Manual of sperm function testing in human assisted reproduction (pp. 81–92). Cambridge University Press. https://doi.org/10.1017/9781108878715.013

Oliveria, L. Z., Arruda, R. P., Celeghini, E. C. C., de Andrade, A. F. C., Perini, A. P., Resende, M. V., Miguel, M. C. V., Lucio, A. C., & Hossepian de Lima, V. F. M. (2011). Effects of discontinuous Percoll gradient centrifugation on the quality of bovine sperm evaluated with computer-assisted semen analysis and fluorescent probes association. Andrologia, 44, 9-15. https://doi.org/10.1111/j.1439-0272.2010.01096.x

Ondho, Y. S., & Udrayana, S. B. (2016). Effect of two pre-freezing methods on quality of sexed semen in Ettawa Grade goat. Journal of the Indonesian Tropical Animal Agriculture, 43(4), 405-411. https://doi.org/10.14710/jitaa.43.4.405-411

Parisi, A. M., Thompson, S. K., Kaya, A., & Memili, E. (2014). Molecular, cellular, and physiological determinants of bull fertility. Turkish Journal of Veterinary & Animal Sciences, 38(6), Article 8. https://doi.org/10.3906/vet-1404-76

Peris-Freu, P., Álvarez-Rodríguez, M., Martín-Maestro, A., Iniesta-Cuerda, M., Sánchez-Ajofrín, I., Garde, J. J., Rodriguez-Martinez, H., & Soler, A. J. (2019). Comparative evaluation of DNA integrity using sperm chromatin structure assay and Sperm-Ovis-Halomax during in vitro capacitation of cryopreserved ram sperm. Reproduction in Domestic Animals, 54(Suppl. 4), 46–49. https://doi.org/10.1111/rda.13519

Prabowo, T. A., Bintara, S., Yusiatik, L. M., & Widayati, D. T. (2022). Detection of DNA damage in frozen bovine semen using eosin staining. Pakistan Journal of Biological Sciences, 25(5), 396-400. https://doi.org/10.3923/pjbs.2022.396.400

Priyanto, L., Budiyanti, A., Kusumawati, A., & Kurniasih. (2018). Tingkat kerusakan DNA sperm memengaruhi profil protein sperm pada semen beku Sapi Brahman. Veteriner, 19(4), 512-520.

Promthep, K., Satitmanwiwat, S., Kitiyanant, N., Tantiwattanakul, P., Jirajaroenrat, K., Sitthigripong, R., & Singhapol, C. (2016). Practical use of Percoll density gradient centrifugation on sperm sex determination in commercial dairy farm in Thailand. Indian Journal of Animal Research, 50(3), 310-313. https://doi.org/10.18805/ijar.8427

Rahman, M. S., & Pang, M. G. (2020). New biological insights on X and Y chromosome-bearing sperm. Frontiers in Cell and Developmental Biology, 7, 388. https://doi.org/10.3389/fcell.2019.00388

Ratnawati, D., Isnaini, N., & Susilawati, T. (2017). Pemanfaatan CASA dalam observasi motilitas sperm semen cair Sapi Madura dalam pengencer berbeda. Jurnal Ilmu-Ilmu Peternakan, 27(1), 80-95. https://doi.org/10.21776/ub.jiip.2017.027.01.07

Rawat, M., & Sharma, M. (2020). Effect of Percoll density gradient separation of X and Y sperm on buffalo bull semen quality. Journal of Experimental Zoology, 2021, 349337491.

Reese, S., Pirez, M. C., Steele, H., & Kölle, S. (2021). The reproductive success of bovine sperm after sex-sorting: A meta-analysis. Scientific Reports, 11, 17366. https://doi.org/10.1038/s41598-021-96834-2

Resende, M. V., Bezerra, M. B., Perecin, F., Almeida, A. O., Lucio, A. C., & Lima, V. F. M. (2009). Separation of X-bearing bovine sperm by centrifugation in continuous Percoll and OptiPrep density gradient: Effect in sperm viability and in vitro embryo production. Ciência Animal Brasileira, 10(2), 581-587.

Ribas-Maynou, J., Muiño, R., Tamargo, C., & Yeste, M. (2024). Cryopreservation of bovine sperm causes single-strand DNA breaks that are localized in the toroidal regions of chromatin. Journal of Animal Science and Biotechnology, 15(140), 1-15. https://doi.org/10.1186/s40104-024-01099-0

Ruiz-Díaz, S., Grande-Pérez, S., Arce-López, S., Tamargo, C., Hidalgo, C. O., & Pérez-Cerezales, S. (2020). Changes in the cellular distribution of tyrosine phosphorylation and its relationship with the acrosomal exocytosis and plasma membrane integrity during in vitro capacitation of frozen/thawed bull sperm. International Journal of Molecular Sciences, 21, 2725. https://doi.org/10.3390/ijms21082725

Rumende, R. R. H., Kalim, H., Widodo, M. A., & Djati, M. S. (2013). The improvement of sperm quality in the separation of sperm with Percoll gradient density centrifugation using phospholipids. Jurnal Kedokteran Brawijaya, 23(2), 71-72. https://doi.org/10.21776/ub.jkb.2007.023.02.3

Schmidt, H., & Kamp, G. (2004). Induced hyperactivity in boar sperm and its evaluation by computer-assisted sperm analysis. Reproduction, 128(2), 171–179. https://doi.org/10.1530/rep.1.00153

Sangisapu, S., & Sandeep, K. (2023). Effects of cryopreservation on sperm DNA fragmentation as assessed by sperm chromatin dispersion test in normozoospermic ejaculated spermatozoa. Journal of Evidence Based Medicine and Healthcare, 6(2), 97-105. https://doi.org/10.18410/jebmh/2019/19

Sedó, C. A., Bilinski, M., Lorenzi, D., Uriondo, H., Noblía, F., Longobucco, V., Ventimiglia Lagar, E., & Nodar, F. (2017). Effect of sperm DNA fragmentation on embryo development: clinical and biological aspects. JBRA Assisted Reproduction, 21(4), 343-350. https://doi.org/10.5935/1518-0557.20170061

Shan, S., Xu, F., Hirschfeld, M., & Brenig, B. (2021). Sperm Lipid Markers of Male Fertility in Mammals. International Journal of Molecular Science, 22, 8767, 1-21. https://doi.org/10.3390/ijms22168767

Sharif, M., Hickl, V., Juarez, G., Di, X., Kerns, K., Sutovsky, P., Bovin, N., & Miller, D. J. (2022). Hyperactivation is sufcient to release porcine sperm from immobilized oviduct glycans. Scientific Reports, 12, 6446, 1-14. https://doi.org/10.1038/s41598-022-10390-x

Simoes, R., Feitosa, W. B., Siqueira, A. F. P., Nichi, M., Paula-Lopes, F. F., Marques, M. G., Peres, M. A., Barnabe, V. H., Visintin, J. A., & Assumpção, M. E. O. (2013). Influence of bovine sperm DNA fragmentation and oxidative stress on early embryo in vitro development outcome. Reproduction, 146(5), 433-441. https://doi.org/10.1530/REP-13-0123

Singh, D., Kumar, P., Nehra, K., & Kumar, A. (2019). Sexed semen technology in cattle: A revolutionary technique in the Indian dairy industry. Journal of Animal Reproduction and Biotechnology, 34(3), 256–265.

Solihati, N., Rasad, S. D., & Setiawan, R. (2024). The effect of incubation time on the quality of post-thawed ram-sexed sperm. Livestock and Animal Research, 22(2), 162-167. https://doi.org/10.1530/REP-13-0123

Stival, C., Molina, L. C. P., Paudel, B., Buffone, M. G., Visconti, P. E., & Krapf, D. (2016). Sperm capacitation and acrosome reaction in mammalian sperm. In Buffone, M. G. (Ed.), Sperm acrosome biogenesis and function during fertilization (pp. 93-106). Springer. https://doi.org/10.1007/978-3-319-30567-7_5

Sun, W., Jiang, S., Su, J., Zhang, J., Bao, X., Ding, R., Shi, P., Li, S., Wu, C., Zhao, G., Cao, G., Sun, Q. Y., Yu, H., & Li, X. (2020). The effects of cryopreservation on the acrosome structure, enzyme activity, motility, and fertility of bovine, ovine, and goat sperm. Animal Reproduction, 17(4), 1-10, e20200219. https://doi.org/10.1590/1984-3143-ar2020-0219

Susilawati, T. (2014). Sexing Sperm. UB Press.

Susilawati, T., Nugroho, E., & Widodo, M. A. (2014). Effect of different centrifugation duration on Simmental bull sperm quality and membrane status after sexing, cooling, and freezing processes. American-Eurasian Journal of Sustainable Agriculture, 8(5), 270-275.​

Susilawati, T., Bustari, W. O., Crisara, I. P. B., Kuswati, A. N., Huda, A. T., Satria, A. P. A., & Yekti, A. P. A. (2023). Sex ratio of calves resulted from artificial insemination implementation using sexed semen with Percoll gradient density centrifugation method in Ongole crossbred cows. Indian Journal of Animal Research, 57(7), 841-844.

Tethool, A. N., Ciptadi, G., Wahjuningsih, S., & Susilawati, T. (2022). Deterioration of frozen semen of Bali cattle after cooling at 5 °C. World’s Veterinary Journal, 12(4), 395-404. https://doi.org/10.54203/scil.2022.wvj50

Tiwari, S., Mohanty, T. K., Bhakat, M., Kumar, N., Baithalu, R. K., Nath, S., Yadav, H. P., Dewry, R. K. (2021). Comparative evidence support better antioxidant efficacy of mitochondrial-targeted (Mitoquinone) than cytosolic (Resveratrol) antioxidant in improving in-vitro sperm functions of cryopreserved buffalo (Bubalus bubalis) semen. Cryobiology, 101, 125-134. https://doi.org/10.1016/j.cryobiol.2021.04.007

Ugur, M. R., Saber Abdelrahman, A., Evans, H. C., Gilmore, A. A., Hitit, M., Arifiantini, R. I., Purwantara, B., Kaya, A., & Memili, E. (2019). Advances in cryopreservation of bull sperm. Frontiers in Veterinary Science, 6, 268. https://doi.org/10.3389/fvets.2019.00268

Uhm, A. J., Tae-Heo, Y., Yu, D. M., Kim, D. K., & Gupta, M. K. (2023). Pre-implantation development of cattle embryos produced from fresh bull semen enriched for X- chromosome-bearing sperm using a monoclonal antibody. Veterinary Research Communications, 47(4), 2102-2109. https://doi.org/10.1007/s11259-023-10160-8

Utami, P., Yekti, A. P. A., Simbolon, C. N. A., Syah, H. A., Amaliya, A., Siswoyo, T. A., Isnaini, N., & Susilawati, T. (2025). Analysis of kinetic parameters of sexed Holstein-Friesian bull sperm using Percoll density gradient centrifugation with computer-assisted sperm analysis. Veterinary World, 18(2), 287-295. https://doi.org/10.14202/vetworld.2025.287-295

Wang, Y., Su, M., Chen, Y., Huang, X., Ruan, L., Lv, Q., & Li, L. (2023). Research progress on the role and mechanism of DNA damage repair in germ cell development. Frontiers in Endocrinology, 14, 1234280. https://doi.org/10.3389/fendo.2023.1234280

Wysokińska, A., Szablicka, D., Dziekońska, A., & Wójcik, E. (2023). Analysis of changes in the morphological structures of sperm during preservation of liquid boar semen in two different seasons of the year. Animal Reproduction Science, 256, 107297. https://doi.org/10.1016/j.anireprosci.2023.107297

Yekti, A. P. A., Utami, P., Syah, H. A., Ciptadi, G., Setyawan, A. D., & Susilawati, T. (2024). Quality and proportion of X and Y sperm after sexing process using Percoll density gradient centrifugation method on different gradients and diluents in Belgian Blue cross bull. Advances in Animal and Veterinary Sciences, 12(11), 2211–2220. https://doi.org/10.17582/journal.aavs/2024/12.11.2211.2220

Yekti, A. P. A., Ciptadi, G., Widayati, D. T., & Susilawati, T. (2023). The quality and proportion of sperm X and Y in sexed frozen semen separated with Percoll density gradient centrifugation method on Holstein-Friesian bull. Advances in Animal and Veterinary Sciences, 11(3), 371–378. https://doi.org/10.17582/journal.aavs/2023/11.3.371.378

Zini, A., Finelli, A., Phang, D., & Jarvi, K. (2000). Influence of semen processing technique on human sperm DNA integrity. Urology, 56(6), 1081–1084. https://doi.org/10.1016/S0090-4295(00)00770-6

Authors

F. Safa
A. P. A. Yekti
P. Utami
H. A. Syah
N. Febrianto
A. Rachmawati
A. Yuswati
A. Amaliya
D. Sulistyowati
T. Susilawati
tsusilawati@ub.ac.id (Primary Contact)
Safa, F., Yekti, A. P. A., Utami, P., Syah, H. A., Febrianto, N., Rachmawati, A., Yuswati, A., Amaliya, A., Sulistyowati, D., & Susilawati, T. (2025). Sperm Quality, Kinematics, Membrane Integrity, and DNA Fragmentation of Frozen Sexed Semen in Holstein-Friesian Bulls. Tropical Animal Science Journal, 48(3), 199-210. https://doi.org/10.5398/tasj.2025.48.3.199

Article Details

How to Cite

Safa, F., Yekti, A. P. A., Utami, P., Syah, H. A., Febrianto, N., Rachmawati, A., Yuswati, A., Amaliya, A., Sulistyowati, D., & Susilawati, T. (2025). Sperm Quality, Kinematics, Membrane Integrity, and DNA Fragmentation of Frozen Sexed Semen in Holstein-Friesian Bulls. Tropical Animal Science Journal, 48(3), 199-210. https://doi.org/10.5398/tasj.2025.48.3.199

List of Cited By :

Crossref logo